
Correctness without Serializability:
Verifying Transactional Programs under Snapshot Isolation

Ismail Kuru
Koç University, Istanbul

ikuru@ku.edu.tr

Burcu Kulahcioglu Ozkan
Koç University, Istanbul

bkulahcioglu@ku.edu.tr

Suha Orhun Mutluergil
Koç University, Istanbul

bkulahcioglu@ku.edu.tr

Serdar Tasiran
Koç University, Istanbul

stasiran@ku.edu.tr

Tayfun Elmas
University of California, Berkeley

elmas@cs.berkeley.edu

Ernie Cohen
Microsoft

ernie.cohen@acm.org

Abstract
We present a static verification approach for programs run-
ning under snapshot isolation (SI) and similar relaxed trans-
actional semantics. Relaxed conflict detection schemes such
as snapshot isolation (SI) are used widely. Under SI, trans-
actions are no longer guaranteed to be serializable, and the
simplicity of reasoning sequentially within a transaction is
lost. In this paper, we present an approach for statically ver-
ifying properties of transactional programs operating under
SI. Differently from earlier work, we handle transactional
programs even when they are designed not to be serializable.

We present a source-to-source transformation which aug-
ments the program with an encoding of the SI semantics.
Verifying the resulting program with transformed user an-
notations and specifications is equivalent to verifying the
original transactional program running under SI – a fact we
prove formally. Our encoding preserves the modularity and
scalability of VCC’s verification approach. We applied our
method successfully to benchmark programs from the trans-
actional memory literature.

1. Introduction
Transactions provide a convenient, composable mechanism
for writing concurrent and distributed programs. They are
used to write shared memory programs using Transactional
Memory, programs that access a single, central databases,
and, more recently but increasingly widely, to write pro-
grams that access geo-replicated databases. In each of these
domains, the transactional platform can provide a strict guar-
antee. For TM and database transactions, this is atomicity
and serializability of transactions, while, for geo-replicated
data types and databases, this is strong conistency. Again,
in each of these domains, transactional platforms provide
less strict guarantees. For TM and database transactions, the
reason is performance and avoidance of frequent transac-

tion aborts. Examples from TM and database domains in-
clude snapshot isolation (SI) and its variants (the default
consistency mode provided by popular databases), early re-
lease of readset entries, and programmer-defined conflict de-
tection. For geo-replicated databases, the choice to avoid
strong consistency is motivated by providing availability to
the datatype, even when the replicas are disconnected (“par-
tition”ed). This is especially the case when each mobile de-
vice has its own replica of (a subset of) shared objects, a
programming model used more and more widely in com-
puting platforms consisting of cloud devices and the cloud.
For geo-replicated databases, programming models that re-
lax the strong consistency guarantee are variants of eventual
consistency, with additional guarantees relating different ob-
jects and the order in which different updates are propagated
to different replicas.

When the transactional execution platform provides strong
consistency and serializable transactions, the code of a trans-
action can be treated as sequential code. In this case, the
code for transactional applications can be treated as sequen-
tial. This significantly simplifies writing and verifying ap-
plications. However, as argued above, for performance and
availability reasons, it is increasingly the case that transac-
tional programs run on a platform that implements a weaker
consistency model. One way to retrieve the simplicity of
sequential programming on relaxed transactional platforms
is to deploy analyses or implement additional analyses in
order to ensure that the particular program’s transactions
run in a serializable manner (e.g. by preventing or avoiding
write-skew anomalies) or under strong consistency although
the underlying platform only provides relaxed consistency.
This approach can be useful some of the time, but, for many
examples, especially for geo-replicated databases, it may
defeat the purpose. Much of the time, it is the application
author’s intent to implement a transactional program that is
correct, i.e. satisfies assertions and invariants and other de-

1 2013/12/8

sirable application-level properties, while being cognizant
that the transactional platform provides a guarantee weaker
than serializability or strong consistency.

Typically, the way relaxed consistency exhibits itself in
transactional code is in the form of “stale reads”’ – data
read by the transaction may not be the most recent version
later during the transaction, or even at the time of the read
access, in the case of geo-replicated databases. Of course,
some guarantees about the set of reads (e.g. causality, limits
on how stale, not seeing partial results of other transactions,
cross-object consistency) are provided by the weak transac-
tional semantics.

The intuition behind writing such programs is ensuring
that

- the transaction computes a correct result despite stale
reads, or - optimistically computing a possibly-correct result,
verifying at commit time that the result is indeed correct
(does not violate application-level properties) and aborting
the transaction otherwise.

Unfortunately, there are currently no tools for verifying
properties (assertions and invariants) of transactional pro-
grams whether the transactional program provides serializ-
ability and strong consistency or not. Static tools for code
verification targeted at sequential programs [? ? ?], and the
VCC verification tool [?] for verifying concurrent C pro-
grams have been quite successful. These tools are (when ap-
plicable) thread, function and object-modular, and scale well
to large programs. For transactional programs running with
the serializability or strong consistency guarantee, transac-
tional code can be treated as sequential and these exist-
ing tools can be used. But for the increasingly more com-
mon transactional platforms with SI or eventual consistency,
these tools cannot be used as they are not aware of trans-
actions or relaxed consistency semantics. In this paper, we
present a static code verification technique for transactional
applications running under weak consistency semantics such
as SI or eventual consistency. The goal of our technique is
to provide a verification environment exactly like that of
VCC but for programs running on relaxed tranasactional
platforms. The verification approach provides scalability and
modularity, as VCC does, but requires programmer annota-
tions for procedure pre- and post-conditions and loops in the
same way all existing modular static code verification tools
do.

In our approach, we take a transactional program and
the semantics of the transactional platform that provides re-
laxed consistency. We produce an augmented C program
with VCC annotations. The program our approach outputs
is the same (has the same structure, etc.) as the input pro-
gram, but includes an encoding of the relaxed transactional
semantics and exactly the executions and interleavings in-
volved there through the use of auxiliary variables in VCC.

In our source-to-source transformation, we make use of
auxiliary variables such version numbers and transaction-

local copies of variables. We also establish and make use
of ownership and “approval” relationships among “objects”
(structs) and in order to represent exactly the set of inter-
leavings that SI allows. This encoding can be viewed as
a very high-level implementation of the transactional plat-
form, where guarantees provided by the transactional plat-
form are modeled using “atomic” code blocks and “assume”
statements. The transformation is designed with special at-
tention towards preserving the thread, function and object
modularity of the verification of the sequential version of the
program in VCC. In particular, the encoding avoids inlining
code that other, interfering transactions that might be run-
ning concurrently. As a result, in the benchmarks we stud-
ied, verification times for code interpreted sequentially and
code running under SI were close to each other.

To illustrate the applicability of our technique, we verified
programs that were written to be correct even under relaxed
transactional consistency. These programs were three bench-
marks from the STAMP [?] transactional benchmarks suite
and a StringBuffer pool example. We verified using our
approach and tool that these examples satisfy application-
level invariants and assertions despite relaxed transactional
semantics. The user annotations required in each case re-
flected the correcness intuition in the relaxed transactional
case, were relaxed versions of the annotations that would
have been required had the program been running sequen-
tially, and did not refer to the auxiliary variables involved
in our encoding. In other words, the user was able to sim-
ply express the correctness intuition without referring to the
mechanisms implementing the transactional semantics. Veri-
fication times for programs running under relaxed semantics
were comparable with verification times for programs run-
ning sequentially.

Although we recognize the distinctions between these
models, in discussions about relaxed conflict detection in
this paper, for brevity’s sake, we use SI to refer to relaxed
consistency models similar to SI and “serializability” to
stand for the class of transactional platforms that provide
atomic, strongly consistent, serializable transactions.

2. Motivating Example
In this section, we present at a high level one of the four
benchmark programs we applied our method to. We do this
for two purposes: First, this example is typical of the design
and correctness intuition for programs that satisfy desired
assertions and invariants while operating under SI. Second,
on this example, we provide intuition fot how this example
running under SI is verified in our approach.

This example has the property that it is correct despite its
executions not being serializable, therefore, enforcing serial-
izability (as is typically accomplished by enforcing conflict
serializability [?]) would be an unnecessary restriction that
hurts performance. The example follows a common parallel
programming pattern, the transactions in this example read

2 2013/12/8

// Program invariant:
// \forall int i; 0<=i && i< pathlist->num_paths
// ==> isValidPath(grid, pathsList->paths[i])

FindRoute(p1, p2) {
transaction {
1: localGridSnapshot = grid; // Local copy of grid
2:
3: // Local, possibly long, computation
4: onePath = shortest_path(p1, p2, localGridSnapshot);
5: // Desired post-conditions of shortest_path:
6: assert(isValidPath(onePath, localGridSnapshot))
7: assert(isConnectingPath(onePath, p1, p2);
8:
9: // Register points on onePath as "taken" on grid
10: // Add onePath to pathsList
11: gridAddPathIfOK(grid, pathsList, onePath);
12:
13: // FindRoute must ensure program invariants,
14 // and the post-condition
15: // onePath \in pathsList &&
16: // IsConnectingPath(onePath, p1, p2)
} }

Figure 1. Outline for FindRoute code and specification.

a large portion of the shared data, perform local computa-
tion and update only a small portion of the shared data. Un-
der conflict-serializability all concurrent transactions con-
flict and transactions can only run serially, one at a time.

As shown in 1, in the Labyrinth benchmark from the
STAMP benchmark suite, each concurrent transaction runs
an instance of the function FindRoute to route a wire
“Manhattan-style” in a three-dimensional grid (globalGrid)
from point p1 to point p2. Wires are represented as paths:
lists of points with integer x, y, and z coordinates, where
consecutive entries in the list must be adjacent in the grid.
The grid is represented as a three-dimensional array, where
each entry [i,j,k] is the unique ID of the path (wire). A
data structure pathList keeps pointers to all paths in an
array.

Each execution of FindRoute(p1,p2) first takes a
snapshot of the grid (line 1) and then performs local compu-
tation using this local snapshot to compute a path (onePath,
line 4) from p1 to p2. Observe that, during this local com-
putation, other executions of FindRoute may complete and
modify the grid. In other words, localGridSnapshot
may be stale snapshot of grid. SI guarantees in this exam-
ple that (i) the read of the entire grid in line 4 is atomic, (ii)
that the updates to onePath and globalGrid in line 11
are atomic, but does not guarantee that the entire transaction
is atomic.

Desired properties for this program are that (i) the grid is
filled correctly by the information, and that (ii) no two paths
overlap. The latter of these is implicitly ensured because
each grid point contains a single wire ID number. The former
is formally expressed below

isValidPath(int ***grid, path_t* p) =
(\forall int i; 0<= i < path->path_len ==>

p->ID == grid[p->x[i]][p->y[i]][p->z[i]])
\forall int i; 0<= i < path->path_len-1 ==>

isAdjacent(p->x[i], p->y[i], p->z[i],
p->x[i+1], p->y[i+1], p->z[i+1])

As shown in Figure 1, FindRoute must preserve this
invariant for all paths on pathList in addition to the post-
conditions that onePath is a valid path that connects p1 to
p2 and is in pathList.

Static Verification of Sequential FindRoute: When
FindRoute is viewed as if it is running sequentially, with
no interference from other transactions, it is straightforward
to verify using VCC. The following are the key steps taken:

• We verify that the code for shortest path satisfies the
post-conditions in lines 6 and 7.

• Using this fact, we verify that gridAddPathIfOK, if
and when it terminates, satisfies the program invariant
(no two paths overlap and pathsList and grid are
consistent), and the desired post-conditions in 14.

Verifying FindrRoute Under SI: We next outline the
intuition for why FindRoute remains correct under SI.

In a given instance of FindRoute, if gridAddPathIfOK
detects that onePath overlaps an existing wire, it explicitly
aborts the transaction. Intuitively, instances of FindRoute
that complete do so because they have computed a path
onePath that not only does not overlap any of the wires
in the initial snapshot localGridSnapshot, but also does
not overlap any of the paths added to the grid since.

As we will formally argue using our approach later in the
paper, FindRoute remains correct when run transactionally
under SI because

• As per SI, the updates to pathList and grid performed
by gridAddPathIfOK are carried out atomically,

• to verify that an atomic, terminating execution of grid-
AddPathIfOK establishes the desired program invariant
and post-condition, it is sufficient to know that the post-
conditions established by shortest path in lines 7 and
8 hold at the time gridAddPathIfOK starts running,
and,

• since the post-conditions of shortest path in lines 7
and 8 are in terms of transaction-local variables, they con-
tinue to hold despite interference from other transactions.

In our approach, the code in Figure 1 is augmented with
auxiliary variables using which the semantics of SI is en-
coded. Below, we list a few highlights of this encoding:

• We associate with each variable (e.g. each grid cell and
path element) a version number.

• Using “assume” statements, we encode the fact that the
grid snapshot in line 1 is taken atomically. This snap-
shot is accomplished by traversing the grid and build-
ing a transaction-local snapshot of it. To indicate that
while reading grid cell grid[i1][j1][k1] a grid cell
grid[i2][j2][k2] read earlier has not been modified
by a concurrent transaction, we write
assume grid[i1][j1][k1].version

localGridSnapshot[i1][j1][k1].version

3 2013/12/8

• Using fictitious locks and the “atomic” statement in
VCC, we apply the updates carried out by the tranas-
action indivisibly.

The encoded file preserves the structure of the original, and
does not inline code from other possibly interfering transac-
tions, as is the case with some techniques on static verifica-
tion of concurrent programs.

Apart from the restrictions expressed by the encoding as
explained above, the resulting program is an annotated, con-
current VCC program. By verifying the invariants and as-
sertions in the resulting program, the programmer is ensured
that the original program running under SI satisfies the in-
variants and assertions.

While the exact form of the argument differs from bench-
mark to benchmark and can be somewhat more complicated
than above, we have found that the correctness argument for
the programs we target has the following pattern:

1. The “read phase” and the “local computation phase” of
the transaction establish some conditions in terms of pro-
gram variables,

2. These conditions remain true even after the global state
is changed by other concurrent transactions committing

3. These conditions suffice for the “write phase” to establish
the desired invariants and transaction post-condition, and

3. Our Approach
In this section, we formally present our approach to verifying
transactional programs running on SI. We first present our
formal model and a formalization of relaxed transactional
semantics. We then give an overview of VCC and explain
how our source-to-source code translation works.

3.1 Preliminiaries: Transactional Programs
In this section, we define some formal definitions that will
later be used to describe our program transformation, relaxed
transactional semantics.

Program texts we consider are sets of valid C functions.
Functions may contain a list of arguments. These function
arguments are interpreted by our method as shared objects.
If the user wants a function argument to be interpreted as
thread local, she should annotate it as thread local in the
function precondition. If there exists two pointer arguments
of the same type in a function, they may be interpreted as
aliases to same address. To prevent this, difference between
them should be stated in the function precondition. All data
sharing is modelled via aliasing among input arguments.

A program is a function which maps a given transaction
to a sequence of functions from program text. In our ap-
proach, transactions have the following structure:

• A call to beginTrans function initiates the transaction
and returns a unique transaction id t

• Transactions may read a shared variable to a local copy
if it is allowed by consistency semantics. However, write
operations on shared variables are performed on the local
copy until commit of the transaction. When a transaction
calls commitTrans(t) function, all objects in the write
set of t are updated atomically by their values in the
local copy, if it is allowed by consistency semantics.
If it violates consistency semantics, transaction aborts
without updating any shared variable. Every transaction
calls commitTrans function once and only once and
after calling this function, the transaction is assumed not
to perform any reads or writes on the shared variables.

• The transaction t terminates by calling endTrans(t)

function.

The transactional programs we considered contain both
local and shared variables. A program state is a function like
heap which assigns values to both local and shared variables.

Program executions are sequences of actions which are
program statements executed by a transaction. Each action
takes a program state and changes it into another state de-
pending on the semantic interpretation of the statement it
executes. An execution shows the history of a particular run
of the program including interleavings of the transactions.
We do not provide any formal details about executions since
they are the similar to history or schedule definitions of the
many studies in the literature.

We say that a transaction is successful for an execution, if
transaction successfully commits (or does not abort) in this
execution. For this study, we consider set of executions of
which all transactions are successful. Since aborted trans-
actions do not have any visible effect on the program state
projected on to shared variables, there is nothing to verify
about these transactions. Thus, we may neglect them.

3.2 SI and other Relaxed Conflict Detection
Since an execution is a sequence of actions, we can enumer-
ate its actions i.e., E “ e1, e2, e3, Then, we can define
an interval ri, jsE of an execution E “ e1, e2, e3, ... as the
sequence ei, ei`1, ..., ej , where i and j are non-negative in-
tegers and i ă j.

To make precise the sets of executions of a program
allowed by different relaxed conflict-detection schemes, we
find it useful to define the protected span of a shared variable
x within a transaction t for a given consistency model M .
Intuitively, this span is a set of indices of actions with the
property that, according to the M , at none of these indices a
transaction other than t can update the value of x .

Consider a variable x read by transaction t in execution
E. Then, read span of x in t on E is the interval ri, jsE ,
where ei is the first action within t that reads x and ej is the
commit action of t. Similarly, the write span of x in t on E
is the interval ri, jsE , where ei is the first action within t that
writes to x and ej is the commit action of t. We adopt the

4 2013/12/8

convention that the read span of x in t is empty if t does not
read x. Similarly for write spans.

Snapshot Isolation. A successful execution E is said to
obey snapshot isolation iff for all transactions t, (i) all read
accesses performed by t are atomic, (ii) all write accesses
performed by t are atomic and (iii) if a transaction t both
reads and writes to a variable x, then x can not be mod-
ified by another transaction between first access to x by t
and commit of transaction t. These requirements can be ex-
pressed by precisely defining protected span for SI.

To specify snapshot isolation in terms of spans within an
execution, we first define the snapshot read span of a variable
x read by a transaction t in execution E. Let ei be the first
read action (of any variable) in a transaction t, and let ej be
the last read of a variable x by t. Then, the snapshot read
span of x in t on execution E is the interval ri, jsE . If x is
never read in t, its snapshot read span is the empty interval.
The protected span of a variable x in snapshot isolation is
defined as follows:

• If x is only read by the transaction, the protected span of
x is the snapshot read span of x.

• If x is both read and written to, then the protected span is
the interval ri, js where i is the index of the first access
of the transaction to x, and j is the index of the commit
action of t.

• If x is only written to, the protected span is defined to be
the write span of x.

• Otherwise the protected span is empty.

Snapshot isolation requires that the protected span of each
variable x does not contain any commit actions by other
threads that write to x. Definition ?? and the definition of
snapshot isolation in terms of the snapshot read span are
equivalent.

3.3 Concurrency, VCC and Modular Verification
In this section, we briefly, and, due to space constraints,
informally, introduce the VCC mechanisms and conventions
we make use of in our approach.

VCC allows programmers to think C structs as objects
and other base C types (int, char, double etc.,) as primitive
types. VCC allows programmer to create ghost objects or
declare ghost structs which can not modify the concrete
program state but can be used for verification tasks. ghost
structs can be C structs defined in the program or special
types provided by VCC.

Each object has a unique owner at any given time. The
concept of ownership is one mechanism using which access
to objects shared between threads is coordinated, and invari-
ants spanning multiple objects are stated and maintained.
Objects can be annotated with any number of two-state tran-
sition invariants: first-order formulas in terms of any vari-
ables.

VCC allows the introduction of ghost variables of all
types, including all C types, and more complex ones such
as sets or maps. Ghost variables are (auxiliary) history vari-
ables, and they do not affect the execution of the program
and values of program variables.

VCC performs modular verification in the following
manner. Each function is annotated with pre- and post-
conditions. Each loop is annotated with a loop invariant. Ev-
ery struct may be annotated with two-state transition invari-
ants. Code may also be annotated with assertions in VCC’s
first-order specification logic, in terms of the program and
ghost variables in scope. VCC then verifies the code for one
function at a time, using pre-post condition pairs to model
function calls, loop invariants to model executions of loops,
and “sequential” or “atomic” access, as described below, to
model interference from concurrent threads. In “sequential”
access, the thread accessing a variable obtains exclusive ac-
cess to a variable aVar by obtaining ownership of aVar. An-
other way to coordinate access to shared variables in VCC is
to mark them volatile and to require that any state transi-
tion of the program must adhere to the transition invariants
of these objects.

3.4 Source-to-source Transformation for Simulating SI
In this section, we present a source-to-source transformation.
The input to the transformation is C program PSI . PSI con-
tains program text and user annotations that are the program
specifications. These specifications are:

• struct invariants for user defined data types,
• desired function pre- and post-conditions which are

boolean expressions about inputs and outputs of the func-
tions

• assertions which are boolean expressions over transac-
tion local or shared variables that all the program states
at the point of executing this statement must satisfy.

User is not supposed to provide annotations about owner-
ship of the shared objects. Ownership mechanism for shared
objects is established by transformation. However, user can
provide ghost data types and objects. Then, she can write
annotations about ownership mechanisms of these objects.

The output is a program ˜PSI “ EncodepPSIq that will
be verified with VCC. It runs under ordinary C semantics
and contains the kinds of VCC annotations described in Sec-
tion ??. We formally prove that verifying ˜PSI under ordinary
VCC semantics is equivalent to verifying PSI under transac-
tional SI semantics.

The encoding is obtained via a high-level modelling of
the operational semantics of SI. The model uses transaction-
local and globally-visible shared copies for each object, and
VCC statements of the form assume(φ). A thread in a pro-
gram can take a state transition by executing assume(φ)

only at a state s that satisfies φ, in which case, program con-
trol moves on to the next statement. Interleavings disallowed

5 2013/12/8

by the consistency model M are expressed as a formula ψ
in terms of objects’ version numbers, and statements of the
form assume ψ are used in the encoding.

Transforming data types: Original transactional pro-
gram could use primitive C types (int,char etc.) and user de-
fined structs. During transformation, we wrap primitive C
types into new structs so that we can use ownership and syn-
chronization mechanisms on them and augment user defined
structs by adding new fields to them for the same reason. We
explain data type transformation by giving example for both
primitive C types and user defined structs.

First consider primitive C type int. After transformation,
we define a new struct Int as follows:
Int{

int value; int vNo;
SpanFormer* spanFormer;
_(invariant \unchanged(vNo) ==> \unchanged(value))
_(invariant \unchanged(vNo) || vNo == \old(vNo)+1)
_(invariant spanFormer ==> spanFormer->protectedObj == this)

};

SpanFormer{
object token; object protectedObj;
_(invariant mine(token) || mine(object))

}

The “wrapper” type Int holds the following information:

• a field value that corresponds to the value of the variable
in shared memory,

• a version number vNo that gets incremented atomically
each time the value field is written to,

• a (ghost) field spanFormer that is used for coordinating
access to the object. It serves two purposes. First, it is
used to prevent two concurrent transactions from simul-
taneously writing to this Int. Second, when a transac-
tion is in the point of committing, the spanFormer is
used to prevent other transactions from reading and writ-
ing to the Int object. Initially, spanFormer “owns” its
protectedObj. When a transaction t wants to write on
an Int object x, it first takes ownership of its spanFormer’s
token. Then, no other transaction can get the ownership
of x and write to it due to invariant of spanFormer but
could read it. When t commits, it exchanges token with
x and could modify it.

This wrapper type has an important invariant that indicates
that a field’s value remains unchanged if its version num-
ber remains unchanged. This invariant, along with assume

statements involving version numbers allows us to repre-
sent constraints such as the value of a variable remaining
unchanged between two accesses within a transaction.

Now we present transformation of a user defined struct
Node, which represents a node in a sorted linked list. In the
original program, this struct is defined as follows:
Node{

int data; Node* next;

_(invariant next ==> next->data > data)
};

Then, the transformed node struct is:

Node{
//Transformed user input:
Int data; Node* next;

_(invariant next ==> next->data.val > data.val)
//Augmentation:
int vNo; SpanFormer* spanFormer;

_(invariant \mine(data) && !data.spanFormer)
_(invariant \unchanged(vNo) ==> \unchanged(data.value) && \unchanged(next))
_(invariant \unchanged(vNo) || vNo == \old(vNo)+1)
_(invariant spanFormer ==> spanFormer->protectedObj == this)

};

For this struct transformation, we emphasize the follow-
ing points:

• Original type of the data field is transformed to Int

and user invariant on this data changed accordingly. This
is done for transformation of user defined structs with
primitive fields. If a struct fields is another user defined
struct field, this change is not performed.

• Ownership of the data field is given to Node struct.
However, this is not true for next field. Since node
pointed by next is a distinct object, its synchronization
and ownership should be managed by itself (i.e., by its
vNo and spanFormer fields). However, data must be
under control of the node. Therefore, we give ownership
of data to node and set its spanFormer to null. For all
fields with a pointer type, we apply transformation as in
next. Otherwise, transformation applied is like data.

• Since data is managed by node, its vNo field must be
synchronized with node. When a transaction commits by
changing data, it should increment version number of
both data and node.

To implement transactional semantics, we define one
more struct called Trans and provide an instance of this
struct per transaction.

Trans{
bool readSetInt[PInt];
bool writeSetInt[PInt];
PInt localIntCopy[PInt];
...

};

In the definition above PInt stands for struct Int*.
Fields of Trans are ghost maps. readSetInt and writeSetInt
are maps that store Int objects read and written to by this
transaction, respectively. localIntCopy keeps the transac-
tion local values of Int s. If an Int object x is neither read
nor written to by this transaction then localIntCopy[x]

is null.
If there are struct declarations in the original program,

Trans contains three maps for each of these structs used in
the same reasoning with Int.

Transformation of Functions The encoded program
makes use of the following VCC statements:

‚ An assumption statement assume(p̃)where p̃ is a boolean
formula. After this statement, only the executions that
satisfy p̃ can proceed.

6 2013/12/8

‚ An assertion statement assert(p̃)where p̃ is a first order
proposition on program variables. p̃ must be satisfiable
for all executions that reach to this statement.

In the following, we describe how we transform func-
tions. The transformation is described assuming that the
code has been decomposed that each statement accesses a
global variable at most once, as is typical in transactional ap-
plications. The code transformation makes use of a number
of C functions whose pre- and post-conditions are presented
later in this section. Due to space restrictions, we only pro-
vide highlights of the transformation rules:

• Statements of the form beginTrans(t) remain un-
changed in the transformed version. (see pre- post-
conditions of this function below)

• Statements that only assign a value val to a local variable
or a local variable to a local variable remain unchanged
in the transformation.

• Statements that create a new shared variable A of type
Int are transformed to newPInt(A). This is similar for
creating new shared variable of other types.

• Each statement l = v by transaction t that reads a
global variable v into local variable l is transformed to an
atomically-executed statement that performs the equiva-
lent of the following VCC code atomically.

assume(\forall PInt P;
trans->readSet[P] ==>

trans->localIntCopy[P]->vNo == P->vNo);
l = transReadInt(trans, V);

Consider grid example. It takes snapshot of the grid like
in the following pseudo code:

foreach(i,j,k in grid’s range){
localGrid[i][j][k] = grid[i][j][k];

}

When we transform this code, we obtain something as
follows:

foreach(i,j,k in grid’s range){
_(atomic){

//assume previously read grid points are the same
_(assume \forall PInt P; trans->readSet[P] ==>
trasn->localIntCopy[P]->vNo == P->vNo)
localGrid[i][j][k] = transReadInt(trans,grid[i][j][k]);

}
}

One can observe that after execution of above code, grid
has been read atomically since it is assumed that no one
has changed the grid.

• Each statement V = l that writes the value of a local
variable l to a shared variable V is transformed to the an
atomically-executed statements that performs the equiv-
alent of the following VCC code atomically.

_(assume (trans->readSet[V] ==>
trans->localIntCopy[V]->vNo == V->vNo) &&

(V->owner == t ||
V->owner == V->spanFormer)

)
beginWriting(V,t);
transWriteInt(V, l, trans);

At some point in the function addGridPathIfOK of grid
example, original code looks like the following:

foreach(i,j,k in grid’s range){
grid[i][j][k] = localGrid[i][j][k];

}

This code is transformed like following pseudo code:

foreach(i,j,k in grid’s range){
_(assume readSet[grid[i][j][k]] ==> \unchanged(grid[i][j][k]) &&

grid[i][j][k]->owner is not any other transaction)
beginWriting(grid[i][j][k],t);
_(atomic){

transWriteInt(grid[i][j][k],localGrid[i][j][k],trans);

}
}

This code achieves that grid points that are on the
onePath has not changed because:

They stay the same until beginWriting by assump-
tion,

Their ownership can be taken inside beginWriting
before any other object can modify them inside due
to previous assumption. Since beginWriting gives
ownership of tokens to the transaction (see its post
condition below), no other transaction can modify
them from this point on (see invariant of SpanFormer).

• Each statement commitTrans(t, inv), is transformed
to a sequence of statements. In this sequence, first we
get ownership of each object we want to commit such
that no other transaction can read or write to them any
more. Then, we modify them and make them readable
and writeable by other transactions. Since effects of fail-
ing transactions are not visible, we only model succeed-
ing executions of a transaction. This being the case, when
t is about the commit, the objects in t’s modify must have
stayed the same since first access of t. This is achieved by
the code we transformed while writing to the global data.
Therefore, commit is transformed as:

commitTrans(trans,t);
assert(inv);

At the point of commit we are sure that the objects t
wants to modify has not changed since first time it has
been read or written to because:

if first access is a read, transformation of the write
statement above ensures that it has not changed since
the read and it can not change after the write due to
the fact that t holds token.

if first access is a write, t owns the token after write
and it can not change until commit.

In the grid example, transaction commits after execution
of addGridPathIfOK function. trans->writeSet

contains all the grid points on onePath. After call to

7 2013/12/8

commitTrans, ownership of all these points are obtained
by the transactiont. Due to the properties of encoding
explained above, points on the onePath are the same
since the snapshot was taken. Thus, they are not a part
of another path. Hence, program invariant and assertions
stated in the commented lines are satisfied.

• For each statement endTrans(t), we replace the state-
ment with endAndCleanTrans(t) in the encoded ver-
sion.

• Each statement assert(p) changed to assert(p̃) is
obtained by accessing sub fields of a primitive type as
obtained in the invariant of Node struct.

The functions used in the encoded program are listed
below together with their preconditions and postconditions:
• Trans beginTrans(t) creates a Trans object trans

for thread t. This function has no pre-condition and has
the post-condition:

\forall PInt P; !trans->readSet[P] &&
!trans->writeSet[P] &&
trans->localIntCopy[P] == null

• beginWriting(V, t) is called when t wants to write
V . It passes V->spanFormer->token to t.Since we
are verifying only successful executions of transactions
(and assuming that aborted transactions have no visi-
ble effect), we call beginWriting in the encoded pro-
gram only at a state where it will successfully complete.
This function has the post-condition that the owner of
V->spanFormer->token is the current transaction t.

• PInt transReadInt(V,trans) reads V in a transac-
tion that owns trans. If V has not been read or written to
before, it creates a new PInt V 1, assigns its fields equal
to V and adds V to readSet of trans. Otherwise, it
returns trans->localIntCopy[V]. This function does
not require V to be owned by transaction calling this func-
tion and has the post-condition that

t->readSet[V] == true &&
trans->localIntCopy[V] == result &&
result->vNo == V->vNo && result->value == V->value

• newPInt(V) is used to create a new PInt variable. This
function has the post-condition that V->owner is t. All
version numbers associated with V are initialized to 0.

• transWriteInt(V, l,trans,t) writes the value of
the local variable l to local copy of the shared vari-
able V . If this variable has not been read or writ-
ten to by this transaction before, it creates the local
copy lclV of which fields are equal to V and sets
trans->localIntCopy[V] to lclV . If V has been read
previously by t, then this function requires that V’s ver-
sion number has not changed since. Moreover, current
transaction should have the ownership of V->spanFormer->token
These are expressed by the pre-condition

trans->readSet[V] ==> trans->localIntCopy[V]->vNo == V->vNo &&

V->spanFormer->token->owner == t

and the post-condition is:

trans->localIntCopy[V] &&
trans->writeSet[V] &&
trans->localIntCopy[V]->value == l &&
unchanged(trans->localIntCopy[V]->vNo)

• commitTrans(trans,t) has two phases:

For all x Ptrans->writeSet, get ownership of x by
exchanging it with x->spanFormer->token’s own-
ership (call beginCommit(x,t, x->spanFormer->token)

).

For all x Ptrans->writeSet, modify x s.t. x->value
== trans->localIntCopy[x]->value and in-
crement x->vNo by one.

commitTrans has a precondition that transaction t has
the ownership of the tokens of the spanFormers of the
objects it wants to modify:

\forall PInt P; trans->writeSet[P] ==> P->spanFormer->token->owner == t

Its post-condition ensures that values of the objects has
changed as desired:

\forall PInt P;
trans->writeSet[P] ==>

P->value == trans->localIntCopy[P]->value &&
P->vNo == trans->localIntCopy[P]->vNo+1

• beginCommit(x,token,t) function passes ownership
of x to transaction t so that it can modify it. It has
precondition

x->spanFormer->token == token &&
token->owner == t

It ensures:

x->owner == t

• endAndCleanTrans(trans,t) ends a transaction t by
releasing the ownership of the objects it holds, clean-
ing its read and write sets. It has the following post-
condition:

\forall PInt P; !trans->writeSet[P] &&
!trans->readSet[P] &&
trans->localIntCopy[P] == null &&
P->owner != t

The following theorem, the proof of which is available at
states the soundness of our verification approach.

Theorem 1 (Soundness). Let PSI be a transactional pro-
gram and ˜PSI be the augmented program obtained from PSI

as described above. Then ˜PSI satisfies its specifications (as-
sertions, invariants, function pre- and post-conditions) if and
only if PSI satisfies its specifications.

It follows from this theorem that users can start with
the program P , provide the desired specifications, and addi-
tional proof annotations. Then, to verify properties of PSI ,

8 2013/12/8

users can follow the (clearly automatable but not yet auto-
mated) source-to-source transformation approach described
in this section and obtain ˜PSI . Verifying the transformed
specifications with the transformed annotations on ĄPSI is
equivalent to verifying the specifications of PSI , by the
soundness theorem.

The source-to-source code transformation preserves the
thread, function, and object structure of the original pro-
gram. The newly-introduced objects representing transac-
tions are local to each thread or transaction. All additional
invariants introduced are per-object. There is no inlining of
code from other, possibly interfering transactions, and the
size of the transformed code is linear in the size of the origi-
nal code.

3.5 Verifying Transformed Program With VCC
In this part, we explain how verification of the transformed
program is performed on the grid example. For the grid,
user provides the program invariant both as the precondition
and postcondition of findRoute and specifications between
lines 13-16 as postcondition for the original program.

Generally, program pre and postconditions are not enough
for verification and the user may need extra ghost variables
or annotations. Especially for the loops or other code blocks
enclosed with curly parentheses, user should provide con-
ditions about user defined shared or local objects that are
satisfied throughout the code block and helps verification of
the post conditions. Since findRoute does not contain such
code blocks. Hence, no extra annotation is needed.

Moreover, user may need to provide extra annotations al-
though the function does not contain any such code blocks.
These annotations reflect the correctness intuition of the
program. To our experience with SI, user should provide
a condition that holds right after end of the read phase
(after snapshot has been taken) such that this condition is
preserved although other transactions interfere and mod-
ify data. In the grid example, assertions on lines 6,7 re-
flect the correctness intuition. onePath is a valid and con-
necting path for localGrid and grid when the snapshot
was taken. It continues to hold during execution although
other transactions interfere and modify grid. This infor-
mation is enough for VCC to verify post conditions of
findRoute: Since onePath is a valid and connecting path
on the localGrid and points on the onePath stays the
same in grid, onePath becomes a valid and connecting
path after call to addGridPathIfOK.

Note that assertions added for verification on lines 6,7 do
not include variables, fields or calls to functions introduced
by the transformation. Therefore, user does not need any
knowledge about transformation and these extra program
parts. This is the case we encountered during the verification
of examples. Correctness intuition based on local and shared
user variables are enough for verification.

If initial correctness intuition is not enough for verifica-
tion for function post-conditions, user may come up with
tighter and stricter annotations for verification of assertions
or program post-conditions until the function is verified.

4. Experiments
We applied our technique to the Genome, Labyrinth and
Self-Organizing Map benchmarks from STAMP [?], a
widely-used collection of concurrent benchmark programs
containing pre-annotated transactional code blocks, and a
StringBuffer pool example. All four of these examples are
correct applications but their executions are not conflict seri-
alizable. The STAMP examples had been implemented in a
way that is correct under SI and using programmer-defined
conflict detection previously [?]. We made precise and for-
mally verified the correctness arguments for these imple-
mentations and for the StringBuffer example.

For each benchmark, we wrote partial specifications and
statically verified that they hold for transactional code run-
ning with the regarding relaxed consistency semantics, start-
ing from a VCC verification of the specifications on a se-
quential interpretation of the benchmark.

I filled the benchmarks

• Labyrinth: We explained and analysed this benchmark
in the motivation section. We also explain verification
effort in section 3.5.

• Genome: In this benchmark, concurrent transactions
runs method addNode under !WAR semantics to add a
new node to a shared linked list of which node values are
in ascending order. Linked list struct has two invariants:
(i) its nodes are in ascending order and (ii) linked list is
not circular. addNode method has the post-condition that
added node is reachable from the head of the linked list.
addNode contains a loop in which two pointers (prev
and curr) iterate over linked list until correct place for
inserting new node is found. In order to satisfy post
condition that new node is reachable from head node
of the linked list we introduced loop invariant prev is
reachable from the head of linked list and prev->next

== curr. Although this statement is true for sequential
execution of addNode, it is too strict for !WAR semantics
since other transactions can add nodes between prev

and curr during the execution of loop body. Therefore,
introduced a relaxed invariant by changing second part of
the condition as curr is reachable from the prev. This
invariant was enough for verification of addNode post
conditions.

• SOM: In this benchmark, concurrent transactions run
learning phase of the machine learning algorithm SOM.
SOM contains a shared grid of which nodes are n-
dimensional vectors. The learning function solve takes
an n-dimensional vector v and grid as input, calculates
euclidean distance of v to each grid nodes, picks the clos-

9 2013/12/8

Memory Consumption Time Consumption
VCC.exe Z3.exe Compiler Boogie Verification Total Time

Seq. Linked List 41.444 K 21.472 K 0.48 s 0.00 s 3.98 s 4.46 s
TM Linked List 58.580 K 84.728 K 1.01 s 0.00 s 23.44 24.45 s
Seq. Labyrinth 39.444 K 3.212 K 0.51 s 0.00 s 0.91 s 1.42 s
TM Labyritnh 64.164 K 75.948 K 1.03 s 0.00 s 17.49 s 18.52 s

Seq. StringBuffer 34.904 K 6.548 K 0.42 s 0.00 s 0.63 s 1.05 s
TM StringBuffer 56.608 K 39.472 K 0.78 s 0.00 s 5.82 s 6.60 s

Seq. SOM 33.068 K 2.268 K 0.31 s 0.00 s 0.56 s 0.87 s
TM SOM 55.028 K 55.356 K 0.87 s 0.00 s 15.88 s 16.75 s

est one v1 and moves nodes in a neighbourhood of v1

closer to v. //I do not know what to write for what we
verified

• StringBuffer In this example, stringBuffer is a shared
array of which elements are pointers to objects. Concur-
rent transactions run Allocate function which iterates
over stringBuffer, sets first non-null pointer to null
and returns the element or Free function which iterates
over stringBuffer and sets first null pointer it sees to
the element it wants to free, under !WAR semantics.
We verified for the Allocate function that after transac-
tion commits successfully, index of the stringBuffer

shown by the iterator is null and for the Free function
that after transaction commits successfully, index of the
stringBuffer shown by the iterator points to the object
given in the input.

Our conclusion from the verification of the encoded pro-
grams was that our encoding facilitates modular proofs, and
that programmer annotations on encoded program make no
reference to auxiliary encoding variables.

5. Related work

Relaxed conflict detection.. Relaxed conflict detection has
been devised to improve concurrent performance by reduc-
ing the number of aborted transactions. Titos et al. [?] in-
troduce and investigate conflict-defined blocks and language
construct to realize custom conflict definition. Our work
builds on this work, and provides a formal reasoning and
verification method for such programs. As we have shown
with SI and !WAR, we believe that our method can easily be
adapted to support other relaxed conflict detection schemes.

Enforcing (conflict) serializability, detecting write-skew
anomalies. There is a large body of research on verifying or
ensuring conflict or view serializability of transactions even
while the transactional platform is carrying out relaxed con-
flict detection [? ? ? ? ? ?]. Since runtime and/or static anal-
yses ensure serializability, programmers can reason about
transactional code as if it were sequential. For transactional
code that is correct but not necessarily conflict or view se-
rializable, as was the case in the examples we studied, ver-

ification approaches will signal potential serializability vio-
lations while serializability enforcement approaches will re-
sult in actual serial execution of transactions. In this work,
we enable programmers to verify properties of transactional
code on SI even when executions may not be serializable.
This allows the user to prove the correctness of and use trans-
actional code that allows more concurrency.

Linearizability:. One way to allow low-level conflicts while
preserving application-level guarantees is to use linearizabil-
ity as the correctness criterion [?]. To prove linearizability of
a transactional program P running under SI, one could use
the encoded program we construct, P̃ as the starting point in
a linearizability or other abstraction/refinement proof. In this
work, we have chosen not to do so for two reasons. First, ab-
stract specifications with respect to which an entire program
is linearizable may not exist or may be hard to write. Second,
programmers would like to verify partial specifications such
as assertions into their program in terms of the concrete pro-
gram variables in scope. Verifying linearizability does not
help the programmer with this task.

Encodings, source-to-source transformations.. As a mech-
anism for transforming a problem into one for which there
exist efficient verification tools, source-to-source code trans-
formations are widely-used in the programming languages
and software verification communities. The work along
these lines that is closest to ours in spirit involves verifying
properties of programs running under weak memory mod-
els. Atig et al. [?] propose a method for simulating programs
running under total-store order (TSO) semantics with a pro-
gram running under sequential consistency (SC) semantics.
For this purpose, auxiliary variables are introduced to the
new program for simulating the store buffers that are part of
the TSO operational semantics. Authors prove that the trans-
formed program running under SC correctly models a subset
of behaviors of the original program under TSO. Alglave et
al. [?] present a sound transformation from programs run-
ning under a variety of weak memory models to programs
running on the sequential SC memory model. This allows
the use of a variety of dynamic and static verification tools
for verifying the transformed program. Our work also makes
use of a source-to-source translation in order to transform
the problem of verifying a transactional program running

10 2013/12/8

under SI to a generic C program that can be verified using
VCC. Our transformation results in only a linear increase
in code size. The distinguishing features of our encoding
via source-to-source transformation are as follows. First, on
the transformation, the thread, object and procedure struc-
ture of the original program is preserved. While verifying
the transactional program under SI, we have the same level
of function, object, and thread-modularity that was present
in the original VCC verification of the sequential program.
No inlining of extra code modeling interference from other
transactions is involved. We also have the practically impor-
tant advantage that while verifying his code under SI, the
user does not have to provide extra annotations in terms of
the extra auxiliary variables in the encoded program.

In this paper, we build on our earlier work [?] where we
present a program abstraction that allows us to verify that
the abstracted transactional program running under relaxed
conflict detection is serializable. While verifying this latter
fact, in earlier work, we made explicit use of left- and right-
mover actions and commutativity, and the proof was carried
out with tool support only for checking the correctness of
abstractions and commutativity. In the current work, the en-
tire verification of the transactional program running under
SI is carried out within the static verification tool VCC, and
the soundness of the verification approach is formally proven
(Theorem 1).

11 2013/12/8

