
Replication-Aware Linearizability*

Chao Wang
IRIF, CNRS and University Paris Diderot, FR

wangch@irif.fr

Constantin Enea
IRIF, CNRS and University Paris Diderot, FR

cenea@irif.fr

Suha Orhun Mutluergil
IRIF, CNRS and University Paris Diderot, FR

mutluergil@irif.fr

Gustavo Petri
ARM Research, UK

gustavo.petri@arm.com

Abstract
Distributed systems often replicate data at multiple locations
to achieve availability and performance despite network parti-
tions. These systems accept updates at any replica and prop-
agate them asynchronously to every other replica. Conflict-
Free Replicated Data Types (CRDTs) provide a principled
approach to the problem of ensuring that replicas are eventu-
ally consistent despite the asynchronous delivery of updates.

We address the problem of specifying and verifying CRDTs,
introducing a new correctness criterion called Replication-
Aware Linearizability. This criterion is inspired by lineariz-
ability, the de-facto correctness criterion for (shared-memory)
concurrent data structures. We argue that this criterion is both
simple to understand, and it fits most known implementations
of CRDTs. We provide a proof methodology to show that
a CRDT satisfies replication-aware linearizability which we
apply on a wide range of implementations. Finally, we show
that our criterion can be leveraged to reason modularly about
the composition of CRDTs.

CCS Concepts • Theory of computation → Logic and
verification; • Software and its engineering → Formal soft-
ware verification;

Keywords replicated data types, verification, weak-consistency

ACM Reference Format:
Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo
Petri. 2019. Replication-Aware Linearizability. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix,
AZ, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3314221.3314617

*All authors but first listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06.
https://doi.org/10.1145/3314221.3314617

1 Introduction
Conflict-Free Replicated Data Types (CRDTs) [20] have re-
cently been proposed to address the problem of availability
of a distributed application under network partitions. CRDTs
represent a methodological attempt to alleviate the problem of
retaining some data-Consistency and Availability under net-
work Partitions (CAP), famously known to be an impossible
combination of requirements by the CAP theorem of Gilbert
and Lynch [11]. CRDTs are data types designed to favor
availability over consistency by replicating the type instances
across multiple nodes of a network, and allowing them to tem-
porarily have different views. However, CRDTs guarantee
that the different states of the nodes will eventually converge
to a state common to all nodes [6, 20]. This convergence
property is intrinsic to the data type design and in general no
synchronization is needed, hence achieving availability.
Availability vs. Consistency. To illustrate the problem we
consider the implementation of a list-like CRDT object, the
Replicated Growable Array (RGA) – due to Roh et al. [19]1

–, used for text-editing applications. RGA supports three op-
erations: 1. addAfter(a,b) which adds the character b –
the concrete type is inconsequential here – immediately after
the occurrence of the character a assumed to be present in the
list,2 2. remove(a) which removes a assumed to be present
in the list, and 3. read() which returns the list contents.

To make the system available under partitions, RGA al-
lows each of the nodes to have a copy of the list instance. We
will call each of the nodes holding a copy a replica. RGA
allows any of the replicas to modify the local copy of the
list immediately – and hence return control to the client –
and lazily propagate the updates to the other replicas. For
instance, assuming that we have an initial list containing the
sequence a · b · e · f 3 and two replicas, r1 and r2, if r1 inserts
the letter c after b (calling addAfter(b,c)), while r2 con-
currently inserts the letter d after b (addAfter(b,d)) the
replicas will have the states a · b · c · e · f and a · b · d · e · f
respectively. We have solved the availability problem, but
we have introduced inconsistent states. This problem is only
exacerbated by adding more replicas.

1We use a variation of code extracted from [3].
2We assume elements are unique, implemented with timestamps.
3We use s0 · s1 to denote the composition of sequences s0 and s1.

https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

Convergence. To restore the replicas to a consistent state,
CRDTs guarantee that under conflicting operations – that
is, operations that could lead to different states – there is
a systematic way to detect conflicts, and there is a strategy
followed by all replicas to deterministically resolve conflicts.

In the case of RGA, the implementation adds metadata to
each item of the list identifying the originating replica as well
as timestamp of the operation in that replica.4 This metadata
is enough to detect when conflicts have occurred. Generally
there are a number of assumptions that are necessary for
the metadata to detect conflicts (for instance that timestamps
increase monotonically with time) which we shall discuss in
the following sections. Then, for RGA it is enough to know
whether two addAfter operations have conflicted by simply
comparing the replica identifiers and their timestamps. In
fact, this is a sound over-approximation of conflict since two
concurrent addAfter operations have a real conflict only if
their first arguments are the same (e.g. the element b in the
example aforementioned). In such case, the strategy to resolve
the conflict will always choose to order first the character
added with the highest timestamp in the resulting list, and in
the particular case where the timestamps should be the same,
an arbitrary order among replicas will be used. In the example
above, and assuming that the character c was added with
timestamp t1 and the character d was added with timestamp
t2, if t2 < t1 (for some order ≤ between timestamps), the list
will converge to a · b · c · d · e · f. We obtain the same result
if t1 = t2 and assume that we have a replica order <r , we have
r2 <r r1. Using an arbitrary order among replica identifiers
is common in CRDT implementations to break ties among
elements with equal timestamps. We will generally assume
that metadata provides a strict ordering and ignore the details.

If the effects of all operations are delivered to all repli-
cas eventually, the replicas will converge to the same state
– assuming a quiescent period of time where no new oper-
ations are performed. This allows to eventually recover the
consistency of the data type without giving away availability.
Specifications. The simplicity of the list data type allows
for a somewhat simple conflict resolution strategy. However,
this is not true for many other CRDT implementations. It is
therefore critical to provide the programmer with a clear, and
precise, specification of the allowed behaviors of the data type
under conflicts. Unfortunately this is not an easy task. Many
times the programmer has no option but to read the imple-
mentation to understand how the metadata is used to resolve
conflicts, for instance by reading the algorithms by Shapiro
et al. [20] (a case where the algorithms are particularly well
documented). Recently Burckhardt [6], Burckhardt et al. [7]
have developed a formal framework where CRDTs and other
weakly consistent systems can be specified. However, we con-
sider that reading these specifications is far from trivial for
the average programmer, let alone writing new specifications.

4We ignore here conflicts due to remove. They are discussed in Sec. 2.

Evidently, having a formal specification is a necessary step
towards the verification of the implementations of CRDTs.
Simpler specifications, not simplistic specifications. It is
important to remark at this point that while it is our goal to
make the specification of CRDTs simpler, we believe that
it is impossible to make them coincide with their sequen-
tial data type counterparts. Most CRDTs will exhibit, due to
concurrency and consistency relaxations, behaviors that are
not possible in the sequential version of the type they repre-
sent. A notable instance is the Multi-Valued-Register (MVR),
which resolves conflicts arising from concurrent updates to
the register by storing multiple values. Hence, a subsequent
read operation to the register might return a set of values
rather than a single value. This is certainly a behavior that is
not possible for a “traditional” register, and in fact, one that
the programmer must be aware of. Our goal is to accurately
specify the behaviors of the CRDT, meaning that often times,
different implementations of the same underlying data type
(say a register) will have different specifications if their con-
flict resolution allows for different behaviours, for instance
the Last-Writer-Wins (LWW) and the MVR registers which
will be mentioned later.
Paper Contributions. Inspired by linearizability [13] we
propose a new consistency criterion for CRDTs, which we
call Replication-Aware Linearizability (RA-linearizability).
RA-linearizability both simplifies CRDT specifications, and
allows us to give correctness proof strategies for these specifi-
cations. To satisfy RA-linearizability a data type must be so
that any execution of a client interacting with an instance of
the data type 1. should result in a state that can be obtained
as a sequence (or linearization) of its updates – where we
assume that all updates are executed sequentially– and 2. any
operation reading the state of the data type instance should be
justified by executing a sub-sequence of the above mentioned
sequence of updates. For instance, for the RGA example, the
state of the final list (when all updates are delivered) should
be reachable by considering a sequence where all addAfter
operations are executed sequentially.

Equipped with this criterion we show that many existing
CRDTs are RA-linearizable. We provide both, their specifi-
cation, and proofs showing that implementations respect the
specification. We provide two different proof methodologies
based on the structure of the conflict-resolution mechanism
implemented by the CRDT. We categorize CRDT implemen-
tations into classes according to their conflict-resolution strat-
egy. Encouragingly, most of the CRDTs by Shapiro et al. [20]
can be proved RA-linearizable.

Given that our criterion is inspired by linearizability, we
consider if it also preserves the same compositionality proper-
ties, i.e. whether the composition of a set of RA-linearizable
objects is also RA-linearizable. While we show that this is
not true in general, we show that compositionality can be
achieved when we concentrate to specific classes of conflict
resolution as described above.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

payload Ti-Tree N, Set Tomb
initial N = ∅, Tomb = ∅
addAfter(a,b) :
generator :
precondition : a = ◦ or (a != ◦ and (_,_,a) ∈ N and

a < Tomb)
let tb = getTimestamp()

effector(a, tb, b) :
N = N ∪ {(a, tb, b)}

remove(a) :
generator :
precondition : (_,_,a) ∈ N and a < Tomb and a , ◦

effector(a) :
Tomb = Tomb ∪ {a}

read() :
let ret-list = traverse(N, Tomb)
return ret-list

Listing 1. Replicated Growable Array (RGA) pseudo-code.

Finally, we have mechanized our methodologies to prove
RA-linearizability. We use the verification tool Boogie [4] to
encode our specifications, CRDTs, and prove the correctness
of the implementations (proof scripts are available at [1]).

Complete proofs of the results in this paper and more de-
tails can be found in [9].

2 Overview
op(v)

r1 :

r2 :

r3 :

(origin)

Figure 1. System Model.

We give an informal descrip-
tion of our system model,
and illustrate our contribution
with two compelling CRDT
implementations from [3, 20].

We consider the implementation of CRDTs, and we focus
on the behaviors of an an instance of the data type, generically
called an object. We assume that objects are replicated among
several replicas. Fig. 1 shows the execution of an operation
op(v) evolving as follows: (i) a client submits an operation
to some replica called origin, (ii) If the operation reads and
updates the object state, the reading action is only performed
at the origin. This part of the operation is called the generator
(cf. [20]). Then, if the operation modifies the state – e.g.
addAfter for RGA – an update is generated to be executed
in every replica. This part of the operation shall be called the
effector. We assume that effectors are executed immediately at
the origin. This is represented by the dot at the origin replica
in Fig. 1. (iii) Finally, the effector is delivered to each replica,
and their states are updated consequently, represented by the
target of the arrows. This model corresponds to operation-
based CRDTs. Our results also apply to state-based CRDTs,
where replicas exchange states instead of operations (Sec. 6).

2.1 RGA CRDT Implementation
Listing 1 presents the code of RGA in a style following that of
Shapiro et al. [20] (a version of the RGA introduced in [3]).

The keyword payload declares the state used to represent
the object: a variable N of type Ti-Tree, and a variable
Tomb of type Set. The effectful operations addAfter and
remove have two labels marked in red: generator and
effector, corresponding to the reading and updating part

of the operations as described above. Notice that the effector
can use as arguments values produced by the generator. The
precondition annotation indicates facts that are assumed
about the state prior to the execution.

Reconsidering Fig. 1 the source of the arrows represents the
execution of a generator jointly with the effector at
replica r1, and the target of the arrows represents the delivery
and execution of the effector at replicas r2 and r3.

Each replica maintains a Timestamp Tree (Ti-Tree) con-
taining in every tree node a pair with: the element added to the
list (for instance the character b), and a timestamp associated
to it (tb) used to resolve conflicts. We will encode the tree as
a set of triples (corresponding to nodes) of the form (a, tb, b)
representing an element b in the tree with timestamp tb and
whose parent is item a also present in the tree. The tree-ness
property is ensured by construction.

The generator portion of addAfter(a,b) has a pre-
condition requiring a to exist in the tree before the insertion
of b (the data structure is initialized with a preexisting ele-
ment ◦). The generator then samples a timestamp tb for b
which is assumed to be larger than any timestamp presently in
the Ti-Tree N of the origin replica.5 The effector por-
tion of addAfter(a,b) adds the triple (a,tb,b) in the
replica’s own copy of N. This ensures that the tree structure is
consistent with the causality of insertions in the data structure.
A client of the object will only ever attempt to add an element
after another element which it has already seen as mandated
by the addAfter API. Hence, the parent node of any node
was inserted before it, and is causally related to it. Similarly,
nodes that are not related to each other on any path of the tree
(eg. siblings) are not causally related. An example of such a
tree is shown in the left most box of Fig. 2: elements c and b
were concurrently added after a, and a was added first after
the initial element ◦.

From a Ti-tree, we can obtain a list by traversing the
tree in pre-order, with the proviso that siblings are ordered ac-
cording to their timestamps with the highest timestamp visited
first. The leftmost box in Fig. 2 shows a tree that results in
the list a · b · c assuming the timestamp order ta < tc < tb.

Fig. 2 shows two concurrent operations addAfter(c,d)
and addAfter(c,e) executing in two different replicas
starting both with the state depicted on the left. Then, the
two trees result in different lists in each replica before the
operations are mutually propagated.

We have so far ignored remove. Consider the case where
a replica executes addAfter(a,b) on a replica while an-
other one executes remove(a). If the addAfter(a,b)
effector reaches some replica after the effector of remove(a)
there is a problem since the precondition of the effector of
addAfter(a,b) requires that the element a be present in
the Ti-tree of the replica. To avoid this kind of conflict,

5Also, tb cannot be sampled by another replica (as we discussed in Sec. 1
this can be ensured by tagging the timestamps with replica identifiers).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

b : tb

a : ta

◦ : 0

c : tc

ta < tc < tb)
a · b · c

T = ;

addAfter(c; d)

b : tb

a : ta

◦ : 0

ta < tc < tb <

a · b · c · e
te < td)

T = fdg
addAfter(c; e)

c : tcb : tb

a : ta

◦ : 0

c : tc

ta < tc < tb <

a · b · c · d · e

e : ted : td

te < td)
T = ;

b : tb

a : ta

◦ : 0

c : tc

ta < tc < tb <
d : td

T = ;
a · b · c · dtd)

remove(d)

e : ted : td

b : tb

a : ta

◦ : 0

c : tc

e : te

ta < tc < tb < a · b · c · e
T = ;

te)

Figure 2. Example of RGA conflict resolution.

addAfter(◦; a)

addAfter(a; b)

addAfter(a; c)

remove(d)

addAfter(c; d)

addAfter(c; e)

Figure 3. A history for the RGA object.

rendering the operations commutative, RGA does not really
remove elements from the Ti-tree. Instead, an additional
data structure called a tombstone is used to keep track of
elements that have been conceptually erased and should not
be considered when reading the list. Here, the marking of
tombstones is a set Tomb of elements. The last column of
Fig. 2 shows the result of a remove operation.

The method read performs the pre-order traversal ex-
plained before, where all elements in the tombstone Tomb
are omitted. In each of the boxes of Fig. 2 the list shown rep-
resents the result of a read operation in the state depicted.

Operations, histories and linearizability. We consider an
abstract view of executions of a CRDT object called a his-
tory. Informally a history is a set of operations with a partial
order representing the ordering constraints imposed on the
execution of each operation. We represent the execution of
an operation with a label of the form m(a) ⇒ b represent-
ing a call to method m with arguments a and returning the
value b. When the values are unimportant we shall use the
meta-variable ℓ to denote a label. The partial order mentioned
above represents the visibility relation among operations. We
say that an operation with label ℓ1 is visible to an operation
with label ℓ2 if at the time when ℓ2 was executed at the origin
replica, the effects of ℓ1 had been applied in the state of the
replica executing ℓ2. A history is a pair (L,≺) containing a set
of labels L and a visibility relation ≺ between labels. Fig. 3
pictures a history where the last three operations are exactly
those of the execution in Fig. 2. Each node represents a label
and arrows represent that the operation at the source of the
arrow is visible to the operation at the target. Since we assume
that visibility is transitive we ignore redundant arrows.

A similar notion of history is used in the context of lineariz-
ability [13]. The only difference is that the order ≺ relates
two operations the first of which returns before the other one
started. A history (L,≺) is called linearizable if there exists

a sequential history (L,≺seq) (≺seq is a total order), called
linearization, s.t. (L,≺seq) is a valid execution, and ≺ ⊆ ≺seq.

CRDTs are not linearizable since operations are propagated
lazily, so two replicas can see non-coinciding sets of opera-
tions. We relax linearizability to adapt it to CRDTs as follows:
1. we require that the sequential history be consistent with
the visibility relation among operations instead of the returns-
before order, and 2. operations that only read the state of the
object are allowed to see a sub-sequence of the linearization,
instead of the whole prefix as in the case of linearizability.
(We will discuss an additional relaxation in Sec. 2.2).
Intuition of RGA RA-linearizability. To simplify, consider
the linearization of two concurrent operations adding after a
common element: addAfter(a,b) and addAfter(a,c).
This example corresponds to the history shown in the first
three nodes of Fig. 3 from left to right. Because these opera-
tions are concurrent they are not related by visibility so our
criterion allows for any ordering among them. Let us show
that these operations can always be ordered in a way that
the result of future reads will match this ordering. From the
previous explanation we know that the order between b and c
in the resulting list will be determined by their corresponding
timestamps (tb and tc). Assuming that the ordering is that
given in the tree of the first column of Fig. 2, we know that
we can order the operations as addAfter(a,c) followed
by addAfter(a,b) which when executed sequentially ob-
viously results in a · b · c as shown. The timestamp metadata
of RGA gives us a strategy to build the operation sequence
that corresponds to a sequential specification. A concrete lin-
earization of these operations is:

addAfter(◦,a) · addAfter(a, c) · addAfter(a,b)

Unfortunately this simple linearization strategy is not al-
ways applicable. Consider now a similar case where after
issuing the addAfter operations the replicas attempt to im-
mediately read the state. As explained in Fig. 2, a possible
behavior is that the first replica returns ◦ · a · b while the sec-
ond returns ◦ · a · c. If we consider the linearization given
above, the result ◦ · a · b is not possible, since c was added
before b was added. This is because the reading replica has
not yet seen addAfter(a, c). To overcome this problem we
allow methods that read the state to see a sub-sequence of the
global linearization. Thus, we can consider the sequence

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

payload Set S
initial S = ∅
add(a) :
generator :
let k = getUniqueIdentifier()
return k

effector(a, k) :
S = S ∪ {(a, k)}

remove(a) :
generator :
let R = {(a,k) | (a,k) ∈ S}
return R

effector(R) :
S = S \ R

read() :
let A = {a : ∃ k. (a,k) ∈ S}
return A

Listing 2. Pseudo-code of the OR-Set CRDT.

addAfter(◦,a) · addAfter(a, c) · read() ⇒ (◦ · a · c) ·
addAfter(a,b) · read() ⇒ (◦ · a · b)

where the last read ignores the red label addAfter(a, c).
These are only two cases of conflicting concurrent opera-
tions, in Sec. 4 we show that all operations can be ordered
such that they correspond to a sequential execution thereof.

2.2 OR-Set CRDT Implementation
The Observed-Remove Set (OR-Set) [20] implements a set
with operations: add(a), remove(a), read(). The code
of OR-Set is shown in Listing 2 (we assume return values for
add(a) and remove(a) for technical reasons).

add(a)
r1 :

r2 :
add(a) remove(a)

Figure 4. Interleaving-based Set.

Although the mean-
ing of these methods
is self-evident from
their names, the re-
sults of conflicting
concurrent operations
is not evident. Consider for example the case where two repli-
cas add a certain element a and then one of them removes
that element. If we consider an interleaving based execution
of these operations there are two options depending on the
interleaving: i) If remove(a) is the last operation then the
expected set is empty, since the two consecutive add(a)
are idempotent, and the remove would remove the only
occurrence of a. This interleaving is the one depicted with
solid arrows in Fig. 4. ii) On the other hand, if the operation
add(a) of the non-removing process comes last, as depicted
with the dashed arrows in Fig. 4, the final set could contain the
element a. As we have explained before, the operations can
arrive in different orders to different replicas. To guarantee
convergence, OR-Set must ensure that regardless of the order-
ing, the resulting set will be the same. To that end, OR-Set
add operations will tag each added element with a unique
identifier. Then, a remove operation will only remove the
element-identifier pairs which has already seen. For instance,
in the case (ii) above, the remove of a will only remove the
element that has been previously added by the same replica,
since this item has been observed by the remove operation –
and thus its identifier is known to it. The concurrent add(a)

operation will have an identifier that has not been observed by
the remove Therefore the item will not be removed, even if
the effectors of the two adds are performed in a replica before
the effector of the remove.
Intuition of OR-Set Linearizability. It is easy to find ex-
amples where the implementation of OR-Set can produce
executions that cannot be justified by the standard defini-
tion of linearizability (even with the relaxations discussed in
Sec. 2.1) assuming a standard Set specification. Fig. 5a shows
one such example. Clearly any linearization of the visibility
relation in this execution should order the add and remove
updates before the read queries, and the linearization of the
updates should end with a remove. Therefore, the final set
returned by each of the two read queries should have at
most one element (the read queries see all the updates in the
execution), contrary to their return value in this execution.

This execution shows that the remove operation behaves
as both a query (observing a certain number of adds of the
element to be removed) and an update (by removing said
observed elements). To cope with such cases, we will consider
in our definition that query-update operations can be split into
a query part corresponding to the generator, which only reads
the state – and hence is allowed to see a sub-sequence of the
linearization of updates – and an update part corresponding to
the effector which will use the results of the prior query. For
instance, remove will be split into a query part readIds
where only the elements visible at the time of the remove
are selected, and an update part remove where only those
elements selected are erased. Any identifier not in the set
returned by readIds will remain in the set after the update
part of remove. Evidently, this requires some mechanism for
“marking” the adds that are concerned. We will consider that
each add has a unique identifier. Fig. 5b shows this rewriting.
The result of the rewriting admits a linearization consistent
with the specification of Set, as explained above.

3 Replication-Aware Linearizability
In this section we formalize the intuitions developed in Sec. 2.
We define the semantics of CRDT objects (§ 3.1), specifica-
tions (§ 3.2), and our notion of RA-linearizability (§ 3.3). For
lack of space, our formalization focuses only on operation-
based CRDTs. However, the notion of RA-linearizability ap-
plies to state-based CRDTs as well (see Section 6).

3.1 The Semantics of CRDT objects
To formalize the semantics of CRDT objects and our correct-
ness criterion we use several semantic domains defined in
Fig. 6. We will use operation labels of the form o.m(a)

i,ts
⇒ b

to represent the call of a method m ∈ M of object o ∈ O, with
argument a ∈ D, resulting in the value b ∈ D, and generat-
ing the timestamp ts. Since there might be multiple calls to
the same method with the same arguments and result, labels

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

add(b)) 1
r1 :

r2 :
add(a)) 3 add(b)) 4

add(a)) 2

remove(a)) f(a; 3)g

remove(b)) f(b; 1)g

fbg

fbgfag

fagfa; bg

fa; bg

fa; bg fa; bg

fa; bg fa; bg

read())fa; bg

read())fa; bg

(a) OR-Set non-linearizable execution. Each line represents operations issued to the same replica.

add(b1)
r1 :

r2 :
add(a3) add(b4)

add(a2)

remove({a3})

remove({b1})

{b1}

{b1, b4}{a3}

{a2, a3}{a2, a3, b1}

{a3, b1, b4}

{a2, a3, b4} {a2, b4}

{a2, b1, b4} {a2, b4}

readIds(b)⇒{b1}

readIds(a)⇒{a3}

read()⇒{a, b}

read()⇒{a, b}

(b) Label rewriting of an OR-Set execution. Pairs (a,k) of an element a and identifier k are written as ak .

Figure 5. OR-Set Linearizability vs. RA-linearizability.

are tagged with a unique identifier i. We may omit the ob-
ject o, the identifier i, the timestamp ts, or the return value
b when they are not important. The order relation on T is
denoted by <. Abusing notations, we assume that the set T
contains a distinguished minimal element ⊥ which we shall
use for operations that do not generate a timestamp such as
the method remove of RGA. The timestamp ts of a label

ℓ = o.m(a)
i,ts
⇒ b is denoted ts(ℓ). The set of all operation

labels is denoted by L.
Given a CRDT object o, its semantics is defined as a labeled

transition system (LTS) JoK = (GC,A, gc0,→), where GC
is a set of global configurations, A is the set of transition
labels called actions, gc0 is the initial configuration, and→⊆
GC × A × GC is the transition relation.

Our semantics assumes the following two properties of
the propagation of effectors: (i) the effector of each opera-
tion is applied exactly once at each replica, and (ii) if the
effector of operation ℓ1 is applied at the origin replica of ℓ2
before ℓ2 happens, then for every replica r, the effector of
ℓ2 will be applied only after the effector of ℓ1 has already
been applied. These are commonly referred to as causal de-
livery. We assume causal delivery because our formalization
focuses on operation-based CRDTs. However, the notion of
RA-linearizability and the compositionality results in Sec-
tion 5 apply to state-based CRDTs as well, even if the network
infrastructure doesn’t satisfy causal delivery (see [9]).

A global configuration (G, vis,DS) is a “snapshot” of the
system that records all the operations that have been exe-
cuted. G ∈ [R → LC] 6 stores the local configuration of
each replica (LC denotes the set of local configurations). A
local configuration (L,σ) contains the state σ of a replica and
the set L of labels of operations that originate at this replica,
or whose effectors have been executed (or applied) at this
replica. When ℓ ∈ L, we say that ℓ is visible to the replica or
that the replica sees ℓ. The set of replica states σ is denoted

6We use [A→ B] to denote the set of total functions from A to B.

o ∈ O CRDT Objects
r ∈ R Replicas
m ∈ M Methods

a,b ∈ D Data
ts ∈ T Timestamps
L ⊆ L Label Set

ℓ ≡ o.m(a)
i,ts
⇒ b ∈ L Operation Label

Figure 6. Semantic Domains.

OPERATION G(r) = (L, σ) θ (σ , m, a) = (b, δ, ts)

δ (σ) = σ ′ ℓ = o.m(a)
(i,ts)
⇒ b unique(i)

ts , ⊥ ⇒ (∀ℓ′ ∈ L. ts(ℓ′) < ts) ∀ℓ′ ∈ labels(vis). ts(ℓ′) , ts
(G, vis, DS)

genr(ℓ)
−−−−−−→ (G[r← (L ∪ {ℓ }, σ ′)], vis ∪ (L × {ℓ }), DS[ℓ ← δ])

EFFECTOR G(r) = (L, σ)
ℓ ∈ minvis(labels(vis) \ L) DS(ℓ) = δ δ (σ) = σ ′

(G, vis, DS)
effr(ℓ)
−−−−−→ (G[r← (L ∪ {ℓ }, σ ′)], vis, DS)

Figure 7. Operational Semantics of CRDTs. C[a ← b] de-
notes the in-place update of element a of the domain of C
with value b; unique(i) to ensure that i is a unique identifier;
and labels(vis) = {ℓ : ∃ℓ′. (ℓ, ℓ′) ∈ vis ∨ (ℓ′, ℓ) ∈ vis}.
by Σ. The relation vis ⊆ P(L × L) is the visibility relation be-
tween operations, i.e., (ℓ1, ℓ2) ∈ vis, where ℓ2 is an operation
originated at a replica r, if the effector of ℓ1 was executed
at r before ℓ2 was executed. When (ℓ1, ℓ2) ∈ vis, we say that
ℓ1 is visible to ℓ2, or that ℓ2 sees ℓ1. As it will be clear from
the definition of the transition relation, vis is a strict partial
order. Finally, DS ∈ [L → ∆] associates to each operation
label ℓ ∈ L an effector δ ∈ [Σ→ Σ], which is the replica state
transformer generated when the operation was executed at
the origin replica (∆ denotes the set of effectors). For some
fixed initial replica state σ0, the initial global configuration
is defined by gc0 = (G0, ∅, ∅) ∈ GC, where G0 maps each
replica r into (∅,σ0).

The transition relation between global configurations is
defined in Fig. 7. The first rule describes a replica r in state
σ executing an invocation of method m with argument a. We
use a function θ to represent the behavior of the generators
of all methods collectively (the code under the generator
labels), i.e., θ (σ ,m,a) stands for applying the generator of

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

m with argument a on the replica state σ . We assume that
timestamps are consistent with the visibility relation vis, i.e.,
the timestamp ts generated by θ is strictly larger than all the
timestamps of operations visible to r, and that each timestamp
can be generated only once. This transition is labeled by
genr(ℓ) where ℓ is the label of this invocation. We may ignore
the index r when it is not important.

The second rule describes a replica r in state σ executing
the effector δ that corresponds to an operation ℓ originated in
a different replica. This transition is labeled by effr(ℓ).

We say that a method m ∈ M is a query if it always re-
sults (by applying the generator) in an identity effector δ
(i.e. δ (σ) = σ for all replica states σ). We shall call an up-
date any method m which is not a query – that is, whose
effectors are not the identity function – and whose result-
ing effector and return value do not depend on the initial
state σ of the origin replica. More formally, assuming a func-
tional equivalence relation ≡ between effectors that relates
any two effectors that have the same effect (modulo the val-
ues of timestamps or unique identifiers) m is called an update
when θ (σ ,m,a)|2 ≡ θ (σ ′,m,a)|2, for every a ∈ D and two
states σ ,σ ′ ∈ Σ (for a tuple x , x |k denotes the projection
of x on the k-th component). A method m which is not a
query nor an update is called a query-update. For instance,
the methods addAfter and remove of RGA, and add of
OR-Set, are updates, the method remove of OR-Set is a
query-update, and the read methods of both the RGA and
the OR-Set are queries. We denote by Queries, Updates, and

Query-Updates, the sets of operation labels o.m(a)
i,ts
⇒ b

where m is a query, an update, or query-update respectively.
An execution of the object o is a sequence of transitions

gc0
a0
−→ gc1

a1
−→ A trace tr is the sequence of actions

a0 · a1 . . . labeling the transitions of an execution. The set of
traces of an object o is denoted by Tr(o). A history is a pair
(L, vis) where vis ⊆ L × L is an acyclic relation over the set of
labels L. Given an execution e ending in a global configura-
tion (G, vis,DS), the history of e, denoted by h(e), is the pair
(labels(vis), vis). Note that the relation vis is a strict partial
order in this case. Also, the history of a trace tr, denoted by
h(tr), is the history of the execution that corresponds to tr.
The set of histories Hist(o) of an object o is the set of histo-
ries h of an execution e of o. A pictorial representation of an
execution (trace) can be found in Fig. 5a while an example of
a history can be found in Fig. 3.

3.2 Sequential Specifications
RA-linearizability provides an explanation for concurrent ex-
ecutions of CRDT objects in the form of linearizations, which
can be constrained using standard sequential specifications.

Definition 3.1 (Sequential Specification). A sequential spec-
ification (specification, for short) Spec is a set of tuples
(L, seq), where L is a set of labels and seq is a sequence
including all the labels in L.

To describe sequential specifications in a succinct way we
will provide an operational description. To that end, we will
associate to specifications a notion of abstract state, which we
shall generally denote by ϕ and its domain shall be denoted
by Φ. Then, to each valid label ℓ we will associate a transition

relation ϕ
ℓ
↪−→ ϕ ′ which, given an abstract state ϕ and provided

that the label ℓ can be applied in ϕ, produces a new abstract
state ϕ ′. In the specific case where the label ℓ assumes a
certain precondition pre over the initial abstract state ϕ we

will use Hoare-style preconditions and write
(
ϕ | pre(ϕ)

) ℓ
↪−→

ϕ ′. In this way, a sequential specification is the set of label
sequences that are obtained by the successive application of
the transition relation starting from a given initial state ϕ0.

Example 3.2 (Sequential Specification of RGA). Each ab-
stract state ϕ = (l ,T) contains a sequence l of elements of
a given type and a set T of elements appearing in the list.
The element l is the list of all input values, whether already
removed or not; whileT stores the removed values and is used
as tombstone set. The sequential specification Spec(RGA) of
list with add-after interface is defined by:(

(l1 · b · l2,T
)
| a fresh

) addAfter(b,a)
↪−−−−−−−−−−−−→ (l1 · b · a · l2,T)(

(l ,T) | b ∈ l and b , ◦
) remove(b)

↪−−−−−−−−→ (l ,T ∪ {b})

(l ,T)
read()⇒(l/T)
↪−−−−−−−−−−−→ (l ,T)

where we denote by l/T the list resulting from removing
all elements of T from l . The method addAfter(b,a) puts a
immediately after b in l , assuming that each value is put into
list at most once. Method remove(b) adds b into T . Finally
read() ⇒ s returns the list content excluding any element
appearing in T . Assume that the initial value of list is (◦, ∅),
and ◦ is never removed. We will sometimes ignore the value
◦ from the return of read.

Example 3.3 (Sequential Specification of OR-Set). As ex-
plained in Fig. 5b, the fact that the OR-Set remove method
is a query-update induces a rewriting of the operation la-
bels in a history. This rewriting introduces update operations
add(a, id), for some identifier id, instead of simply add(a),
and remove(S), for some set S of pairs element-identifier, in-
stead of remove(a), and a new query operation readIds(a)
that returns a set of pairs element-identifier. These operations
are specified as follows. The abstract state ϕ is a set of tuples
(a, id), where a is a data and id is a identifier. The sequential
specification Spec(OR-Set) of OR-Set is given by the transi-
tions:

ϕ
readIds(a)⇒S
↪−−−−−−−−−−−−→ ϕ [S = {(a, id) | (a, id) ∈ ϕ}]

ϕ
remove(S)
↪−−−−−−−−→ ϕ \ S

(ϕ | (a, id) < ϕ)
add(a, id)
↪−−−−−−−→ ϕ ∪ {(a, id)}

ϕ
read(a)⇒A
↪−−−−−−−−−→ ϕ [A = {a | ∃ id, (a, id) ∈ ϕ}]

Here readIds(a) ⇒ S returns the set of pairs with data a,
remove(S) removes S from the abstract state, add(a, id) puts

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

{(a, id)} into the abstract state, and read() ⇒ A returns the
value of the OR-Set.

3.3 Definition of Replication-Aware Linearizability
We now provide the definition of RA-linearizability which
characterizes histories of CRDT objects. To simplify the pre-
sentation, we consider first the case where all the labels in
the history are either queries or updates (query-updates are
considered later). The intuition of RA-linearizability is that
there is a global sequence (or linearization) of the update
operations in an execution which can produce the state of
each replica when all the updates are visible to them. Each
query should be justified by considering the sub-sequence of
the global sequence restricted to the updates that are visible
to that query. To be precise:

Definition 3.4. A history h = (L, vis) with L ⊆ Queries ⊎
Updates is RA-linearizable w.r.t. a sequential specification
Spec, if there exists a sequence (L, seq) such that:

(i) seq is consistent with vis, that is: vis ∪ seq is acyclic,
(ii) the projection of seq to updates is admitted by Spec,

i.e. seq↓Updates∈ Spec, where we denote by seq ↓S the
restriction of the order seq to the set S , and

(iii) for each query ℓqr ∈ L, the sub-sequence of updates
visible to ℓqr together with ℓqr is itself admitted by Spec,
i.e., seq↓vis−1(ℓqr)∩Updates · ℓqr ∈ Spec.

We say that (L, seq) is an RA-linearization of h w.r.t. Spec.

The sequences of operations provided in Sec. 2.1 and 2.2
are RA-linearizations.

We now consider the case where histories include query-
updates. In such case, we apply Definition 3.4 on a rewriting
of the original history where each query-update is decom-
posed into a label representing the generator and another label
representing the effector. A mapping γ : L→ L≤2, where L≤2

is the set of labels and pairs of labels in L, is called a query-
update rewriting. We assume that every query or update label
is mapped by γ to a singleton and that the γ image of such
a label preserves its status, i.e., γ (ℓ) is a query, resp., update,
whenever ℓ is a query, resp., update. Also, query-updates la-
bels ℓ are mapped to pairs γ (ℓ) = (ℓ1, ℓ2) where ℓ1 is a query
and ℓ2 is an update. These assumptions are important when
applying Definition 3.4 on the rewriting of a history, since this
definition relies on a partitioning of the labels into queries
and updates. For a history h = (L, vis), its γ -rewriting is a
history γ (h) = (L′, vis′) where
• L′ is obtained by replacing each label ℓ in L with γ (ℓ)

(a label may be replaced by two labels),
• whenever a (query-update) label ℓ is mapped by γ to a

pair (ℓ1, ℓ2), we have that the query is ordered before
the update, formally (ℓ1, ℓ2) ∈ vis′,
• vis′ preserves the order between labels which are mapped

to singletons, and for any query-update label ℓ mapped
to a pair (ℓ1, ℓ2), the query ℓ1 sees exactly the same

set of operations as ℓ and any operation which saw ℓ
must see ℓ2. Formally, whenever (ℓ, ℓ′) ∈ vis we have
that (upd(γ (ℓ)), qry(γ (ℓ′))) ∈ vis′, where for a label
ℓ, qry(γ (ℓ)) (resp., upd(γ (ℓ))), is γ (ℓ) when γ (ℓ) is a
singleton, or its first (resp., second) component when
γ (ℓ) is a pair.

Example 3.5 (Query-Update Rewriting of OR-Set). As shown
in Fig. 5b, the query-update rewriting for OR-Set is defined
by: γ (add(a) ⇒ k) = add(a,k), γ (read() ⇒ A) = read() ⇒
A, and γ (remove(a) ⇒ R) = (readIds(a) ⇒ R, remove(R)).

The following extends Definition 3.4 to arbitrary histories
using the rewriting defined above.

Definition 3.6 (Replication-Aware Linearizability). A his-
tory h = (L, vis) is RA-linearizable w.r.t. Spec, if there exists
a query-update rewriting γ s.t. γ (h) is RA-linearizable w.r.t.
Spec. An RA-linearization w.r.t. Spec of γ (h) is called an
RA-linearization w.r.t. Spec and γ of h.

A set H of histories is called RA-linearizable w.r.t. Spec
when each h ∈ H is RA-linearizable w.r.t. Spec. A data type
implementation is RA-linearizable w.r.t. Spec if for any object
o of the data type, Hist(o) is linearizable w.r.t. Spec.

Reasoning with specifications. To illustrate the benefit of us-
ing RA-linearizability let us consider a simple system where
two replicas execute a sequence of operations on a shared
OR-Set object:

add(a); rem(a); X = read() ∥ add(a); Y = read()

We are interested in checking that the following post-condition
holds after the execution of these operations:

a ∈ X⇒ a ∈ Y

Rewriting the program according to the specification of OR-
Set discussed before, we obtain the following, where the vari-
able R represents the set of value timestamp pairs observed
by the readIds operation as defined by the rewriting:

add(a, i1);
readIds(a) ⇒ R;
rem(R);
X = read();
{a ∈ X⇒ (a, i2) < R}

add(a, i2);
Y = read();
{(a, i2) < R⇒ a ∈ Y}

Post-condition : {a ∈ X⇒ a ∈ Y}

Since OR-Set is RA-linearizable w.r.t. the specification in Ex-
ample 3.3 (proved in Section 4.1), the possible values of X and
Y can be computed by enumerating their RA-linearizations.
The post-condition follows from the conjunction of the asser-
tions in each replica. Let us consider the validation of the as-
sertion of right hand side with the following RA-linearization:

add(a, i2) add(a, i1) readIds(a) ⇒ R rem(R) Y = read()

We have in red color and with solid arrows the operations of
the right hand side replica, and in blue with dashed arrows the
left ones. Let us consider the sub-sequence of the linearization
that is visible to the last operation (Y = read()). Since the first
operation (add(a, i2)) is issued on the same replica, it must

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

be visible to it. Let us now consider different cases for the
operations of the other replica that are visible to the read:
(a) if the remove operation rem(R) is not visible to it, then the
assertion is trivially true, because (a, i2) is in the resulting set
according to the specification, and therefore the consequent
of the assertion is valid. Assume from now on that rem(R) is
visible to it, there are two cases (b) if (a, i2) does not belong to
R the consequent of the assertion is valid, since the addition
of (a, i2) is necessarily visible to the read operation, and we
conclude as before, (c) on the other hand, if (a, i2) ∈ R we
have that the antecedent of the implication is falsified, and
therefore the assertion is also valid.

Here we have considered only one RA-linearization, but it
is not hard to see that commuting the operations of the differ-
ent replicas renders the same argument. Importantly, this rea-
soning was done entirely at the level of the RA-linearizations
(i.e. the specification) of the data type.

For the assertion on the left hand side replica, since visibil-
ity includes the order between operations issued on the same
replica, we get that add(a, i1) is ordered before readIds(a) ⇒ R
in every RA-linearization. Since add(a, i1) is also visible to
readIds(a) ⇒ R, we get that (a, i1) ∈ R. Similarly, every RA-
linearization will order rem(R) before the read() on the left
replica, which implies that if a ∈ X, then (a, i2) < R. Assuming
the contrary, i.e., (a, i2) ∈ R, implies that R = {(a, i1), (a, i2)}
and since rem(R) is visible and linearized before X = read(),
we get that a < X.

4 Proving Replication-Aware Linearizability
We describe a methodology for proving that CRDT objects
are RA-linearizable which relies on two properties: (1) the
effectors of any two concurrent operations (i.e., not visible to
each other) commute, which is inherent to CRDT objects, and
(2) the existence of a refinement mapping [2, 17] showing that
each effector produced by an operation ℓ, respectively each
query ℓ, is simulated by the execution of ℓ (or its counterpart
through a query-update rewriting γ) in the specification Spec.
This methodology is used in two forms depending on how the
linearization is defined along an execution, which may affect
the precise definition of the refinement mapping.

4.1 Execution-Order Linearizations
We first consider the case of CRDT objects, e.g., OR-Set, for
which the order in which operations are executed at the origin
replica defines a valid RA-linearization. We say that such ob-
jects admit execution-order linearizations. We start by formal-
izing the two properties we use to prove RA-linearizability.

Given a history h = (L, vis), we say that two operations ℓ1
and ℓ2 are concurrent, denoted ℓ1 ▷◁vis ℓ2, when (ℓ1, ℓ2) < vis
and (ℓ2, ℓ1) < vis. In general, CRDTs implicitly require that
the effectors of concurrent operations commute:

Commutativity: for every trace tr with h(tr) = (L, vis), and
every two operations ℓ1, ℓ2 ∈ L, if ℓ1 ▷◁vis ℓ2, then

∀σ ∈ Σ. δℓ1 (δℓ2 (σ)) = δℓ2 (δℓ1 (σ))

where δℓ1 and δℓ2 are the effectors of ℓ1 and resp., ℓ2.

Example 4.1. For OR-Set, two add, resp., remove, effec-
tors commute because they both add, resp., remove, element-
id pairs, while an add and a remove effector commute when
they are concurrent because the element-id pairs removed by
the remove effector are different from the pair added by the
add effector (since the add is not visible to remove).

Commutativity implies that for every linearization lin of
the operations in an execution, which is consistent with the
visibility relation, every replica state σ in that execution can
be obtained by applying the delivered effectors in the order
defined by lin (between the operations corresponding to those
effectors). Indeed, by the causal delivery assumption, the
order in which effectors are applied at a given replica is
also consistent with visibility. Therefore, the only differences
between the order in which effectors were applied to obtain
σ in that execution and the linearization order lin involve
effectors of concurrent operations, which commute.

Lemma 4.2. Let ρ be an execution of an object o satisfying
Commutativity, h = (L, vis) the history of ρ, and (L, seq) a
linearization of the operations in L (possibly, rewritten using
a query-update rewriting γ), consistent with vis. For each
local configuration (Lr,σr) in ρ,

σr = δℓn (. . . (δℓ1 (σ0)) . . .)

where δℓ denotes the effector of operation ℓ, σ0 is the initial
replica state, and seq ↓Lr= ℓ1 . . . ℓn .

In order to relate the CRDT object with its specification we
use refinement mappings, which are “local” in the sense that
they characterize the evolution of a single replica in isolation.
A refinement mapping abs associates replica states with states
of the specification, such that any update or query applied
on a replica state σ can be mimicked by the corresponding
operation in the specification starting from abs(σ). Moreover,
the resulting states in the two steps must be again related by
abs. Formally, given a query-update rewriting γ , we define
Refinement as the existence of a mapping abs such that:
Simulating effectors: For every effector δ corresponding to a

(query-)update operation ℓ, and every state σ ∈ Σ,

σ ′ = δ (σ) ⇒ abs(σ)
upd(γ (ℓ))
↪−−−−−−−→ abs(σ ′)

where ↪−→ is the transition function of Spec.
Simulating generators: For every query m, and every σ ∈ Σ,

θ (σ ,m,a) = (b, _, _) ⇒ abs(σ)
ℓ
↪−→ abs(σ)

where ℓ = m(a) ⇒ b. Recall that θ (σ ,m,a) stands for
applying the generator of m with argument a on the

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

`2=addAfter(◦,b) tsb=⇒

r1 :

r2 :

`1=addAfter(◦,a) tsa=⇒ `3=addAfter(b,c)
tsc=⇒

`4=read()⇒ b · a

execution-order
linearizations:

timestamp-order
linearizations :

`2 · `1`2 `2 · `1 · `3 `2 · `1 · `3 · `4

`1 · `2`2 `1 · `2 · `3 `1 · `2 · `4 · `3

Figure 8. Execution-order and timestamp-order linearizations
for RGA. Here tsa < tsb < tsc .

state σ . Also, for every query-update m, and σ ∈ Σ,

θ (σ ,m,a) = (b, _, _) ⇒ abs(σ)
qry(γ (ℓ))
↪−−−−−−→ abs(σ).

Example 4.3. Consider the OR-Set object, its specification
in Example 3.3, and the query-update rewriting in Exam-
ple 3.5. Also, let abs be a refinement mapping defined as the
identity function. The effector of an add(a) ⇒ k operation,
rewritten by γ to add(a, k), and the add(a, k) operation of
the specification have the same effect. Similarly, the effector
of a query-update remove(a) ⇒ R operation, rewritten by
γ to (readIds(a) ⇒ R, remove(a, R)), and the remove(a, R)
operation of the specification have the same effect. Applying
the query operation read() on a state σ results in the same
return value A as applying the same query in the context of the
specification on the state abs(σ) = σ . Finally, for the query-
update remove(a) ⇒ R, executing its generator in a state
σ results in the same return value R as executing the query
readIds(a) ⇒ R introduced by the query-update rewriting in
the specification state abs(σ) = σ .

Next, we show that any object o satisfying Commutativity
and Refinement is RA-linearizable. Given a history h =
(L, vis) of a trace tr, the execution-order linearization of h is
the sequence (γ (L), seq) such that γ (ℓ1) occurs before γ (ℓ2)
in seq iff gen(ℓ1) occurs before gen(ℓ2) in tr, for every two
labels ℓ1, ℓ2 ∈ L. An object o admits execution-order lin-
earizations if for any history h = (L, vis) of a trace tr, the
execution-order linearization is an RA-linearization of h w.r.t.
Spec and γ .

Theorem 4.4. Any object that satisfies Commutativity and
Refinement admits execution-order linearizations.

4.2 Timestamp-Order Linearizations
CRDT objects such as RGA in Listing 1, that use timestamps
for conflict resolution, may not admit execution-order lin-
earizations. For instance, Fig. 8 shows an execution of RGA
where two replicas r1 and r2 execute two addAfter invoca-
tions, and an addAfter invocation followed by a read invoca-
tion, respectively. An execution-order linearization which by
definition, is consistent with the order in which the operations
are applied at the origin replica, will order addAfter(◦, b)
before addAfter(◦, a). The result of applying these two oper-
ations in this order in the specification Spec(RGA) (defined in
Example 3.2) is the list a ·b. However, if the timestamp tsa of

a is smaller than the timestamp tsb of b, a read that sees these
two operations will return the list b · a, which is different than
the one obtained in the context of Spec(RGA). Therefore, we
consider a variation of the proof methodology described in
Sec. 4.1 where the linearizations are additionally consistent
with the order of timestamps generated by the operations. For
instance, in the execution of Fig. 8, addAfter(◦, a) will be
ordered before addAfter(◦, b) because tsa is smaller than tsb
(irrespective of the order between the generators). Moreover,
to extend the notion of timestamp ordering to operations ℓ
that don’t generate timestamps, i.e., invocations of remove
and read, we consider a “virtual” timestamp which is de-
fined as the maximal timestamp of any operation visible to ℓ
(or ⊥ if no operation is visible to ℓ), and require that the lin-
earization is consistent with the order between both “real” and
“virtual” timestamps. For instance, the “virtual” timestamp of
the read in Fig. 8 is tsb because it sees addAfter(◦, a) and
addAfter(◦, b). Then, a valid RA-linearization will order the
read operation before the other addAfter(b, c) operation,
since the timestamp tsc of the latter is bigger than the “vir-
tual” timestamp tsb of the read. The operations that have
the same timestamp (which is possible due to “virtual” times-
tamps) are ordered as they execute at the origin replica. For
instance, the read with “virtual” timestamp tsb is ordered
after addAfter(◦, b) that has the same timestamp tsb since it
executes later at the origin replica.

Formally, for a history h = (L, vis), we define the times-
tamp tsh(ℓ) of a label ℓ in the context of the history h to be
tsh(ℓ) = ts(ℓ) if ts(ℓ) , ⊥ and tsh(ℓ) = max {ts(ℓ′) : (ℓ′, ℓ) ∈
vis}, otherwise. Given a history h = (L, vis) of a trace tr, the
timestamp-order linearization of h is the sequence (L, seq)
such that γ (ℓ1) occurs before ℓ2 in seq iff tsh(ℓ1) < tsh(ℓ2)
or gen(ℓ1) occurs before gen(ℓ2) in tr, for every two labels
ℓ1, ℓ2 ∈ L. An object o admits timestamp-order linearizations
if for any history h = (L, vis) of a trace tr, the timestamp-order
linearization is an RA-linearization of h w.r.t. Spec. 7

Proving admittance of timestamp-order linearizations re-
lies on Commutativity and a slight variation of Refinement
where intuitively, an effector generating a timestamp ts has
to be simulated by a specification operation only when it is
applied on a state σ that doesn’t “store” a greater timestamp
than ts (other effectors are treated as before). Formally, the set
ts(σ) of timestamps in a state σ contains all the timestamps ts
generated by effectors applied to obtain σ . For RGA, the set
of timestamps in a state σ is the set of all timestamps stored
in its timestamp tree. We define Refinementts by modifying
the “Simulating effectors” part of Refinement as follows:

Simulating effectors: For every effector δ of an operation ℓ,

∀σ ∈ Σ. ts(ℓ) ≮ ts(σ) ∧ σ ′ = δ (σ) ⇒ abs(σ)
ℓ
↪−→ abs(σ ′)

7For simplicity, we ignore query-update rewritings. The CRDTs with
timestamp-order linearizations we investigated don’t require such rewritings.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

r1 :
o1.add(d) o2.add(a)

r2 :

o2.add(b) o1.add(c)

Figure 9. A history of two OR-Sets. Each operation is visible
only at the origin, so visibility is given by the horizontal lines.

Example 4.5. Let us consider the RGA object, its specifica-
tion in Example 3.2, and a refinement mapping abs which
relates a replica state (N, Tomb) with a specification state (l ,T)
where the sequence l is given by the function traverse in
read queries when ignoring tombstones, i.e., l = traverse(N, ∅),
and T = Tomb. It is obvious that remove effectors and read
queries are simulated by the corresponding specification oper-

ations. Effectors of addAfter(a, b)
tsb
⇒ operations are simu-

lated by the specification operation addAfter(a, b) only when
tsb is greater than all the timestamps stored in the replica state
where it applies. Thus, let (N, Tomb) be a replica state such
that ts < tsb for every ts with (_, ts, _) ∈ N. The result of

applying the effector δ of addAfter(a, b)
tsb
⇒ is to add b as

a child of a. Then, applying traverse on the new state will
result in a sequence where b is placed just after a because
it has the highest timestamp among the children of a. This
corresponds exactly to the sequence obtained by applying the
operation addAfter(a, b) in the context of the specification.

The proof of an object o admitting timestamp-order lin-
earizations if it satisfies Commutativity and Refinementts is
similar to the one of Theorem 4.4.

Theorem 4.6. Any object that satisfies Commutativity and
Refinementts admits timestamp-order linearizations.

We remark that the API of a CRDT can impact on whether
it is RA-linearizable. For instance, a slight variation of the
RGA in Listing 1 with the same state, but with an interface
with a method addAt(a,k) to insert an element a at an
index k, introduced in [3], would not be RA-linearizable w.r.t.
an appropriate sequential specification (see [9]).

5 Compositionality of RA-Linearizability
We investigate the issue of whether the composition of a set of
objects satisfying RA-linearizability is also RA-linearizable.
While this is not true in general, we show that the composi-
tion of objects that admit execution-order or timestamp-order
linearizations is RA-linearizable under the assumption that
they share the same timestamp generator.

5.1 Object Compositions and RA-Linearizability
Given two objects o1 and o2, the semantics of their composi-
tion o1 ⊗ o2 is the standard product of the LTSs corresponding
to o1 and o2, respectively. The history of a trace tr of o1 ⊗ o2
records a “global” visibility relation between the operations
in the trace, i.e., which operations of o1 or o2 are visible when
issuing an operation of o1, and similarly, for operations of o2.

r1 :
o2.addAfter(◦,c) ts1=⇒

r2 :
o1.addAfter(◦,b)

ts′2=⇒

r3 :
o2.read()⇒ e · d · c o1.read()⇒ b · a

o2.addAfter(◦,e) ts3=⇒ o1.addAfter(◦,a)
ts′1=⇒

o2.addAfter(◦,d) ts2=⇒

Figure 10. A history in the composition ⊗ of two RGAs.

Formally, h(tr) = (L, vis) where L is the set of labels occur-
ring in tr, and (ℓ1, ℓ2) ∈ vis if there exists a replica r such that
effr(ℓ1) occurs before genr(ℓ2) in the trace tr. In general, vis
may not be a partial order since the causal delivery assump-
tion holds only among operations of the same object. The set
of histories Hist(o1 ⊗ o2) of the composition o1 ⊗ o2 is the set
of histories h of a trace tr of o1 ⊗ o2.

For two specifications Spec1 and Spec2 of two objects o1
and o2, respectively, the composition Spec1 ⊗ Spec2 is the set
of interleavings of sequences in Spec1 and Spec2, respectively.
We say that the composition o1⊗o2 is RA-linearizable if every
history of o1 ⊗ o2 is RA-linearizable w.r.t. Spec1 ⊗ Spec2. The
extension to a set of objects is defined as usual.

Linearizability [13] ensures that for every history, any per-
object linearizations, concerning the operations of a single
object, can be combined into a global linearization, concern-
ing all the operations in the history. However, this is not true
for our notion of RA-linearizability. A counterexample is
given in Fig. 9. The operations of o1 can be linearized to
o1.add(c) · o1.add(d) while the operations of o2 can be lin-
earized to o2.add(a) · o2.add(b). There is no RA-linearization
of this history whose projections on each of the two objects
correspond to these per-object linearizations.

5.2 Composition: Execution-Order Linearizability
Although not all per-object RA-linearizations can be com-
bined into global RA-linearizations, this may still be true in
some cases. For the history in Fig. 9, the operations of o1 can
also be linearized to o1.add(d) · o1.add(c) which enables a
global linearization o1.add(d)·o2.add(a)·o2.add(b)·o1.add(c)
whose projection on each object is consistent with the per-
object linearization (we take the same linearization for o2).

We show that in the case of RA-linearizable objects that
admit execution-order linearizations, there always exist per-
object RA-linearizations that can be combined into global
RA-linearizations, hence their composition is RA-linearizable
and moreover, it also admits execution-order linearizations.

Theorem 5.1. The composition of a set of RA-linearizable ob-
jects that admit execution-order linearizations is RA-linearizable
and admits execution-order linearizations.

5.3 Composition: Timestamp-Order Linearizability
Theorem 5.1 does not apply to objects that admit timestamp-
order linearizations. The “unrestricted” object composition
⊗ allows different objects to generate timestamps indepen-
dently, and in “conflicting” orders along some execution. For
instance, Fig. 10 shows a history with two RGA objects o1

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

OPERATION ℓ = ok .m(a)
(i,ts)
⇒ b with k ∈ {1, 2}

(Gk , visk , DSk)
genr(ℓ)
−−−−−−→k (G

′
k , vis

′
k , DS

′
k)

(G′k′, vis
′
k′, DS

′
k′) = (Gk′, visk′, DSk′) for k ′ , k G1(r) = (L1, σ1)

G2(r) = (L2, σ2) ts , ⊥ ⇒ (∀ℓ′ ∈ L1 ∪ L2 . ts(ℓ′) < ts)
∀ℓ′ ∈ labels(vis1 ∪ vis2). ts(ℓ′) , ts

((G1, vis1, DS1), (G2, vis2, DS2))
genr(ℓ)
−−−−−−→ (G′1, vis

′
1, DS

′
1), (G

′
2, vis

′
2, DS

′
2)

Figure 11. The transition rule for generators in the object
composition operator ⊗ts.

and o2. We assume that ts1 < ts2 < ts3 and ts ′1 < ts ′2 (the
order between other timestamps is not important). The opera-
tions of o1, resp., o2, can be linearized to
• o1.addAfter(◦, a) · o1.addAfter(◦, b) · o1.read() ⇒ b · a
• o2.addAfter(◦, c) · o2.addAfter(◦, d) ·

o2.addAfter(◦, e) · o2.read() ⇒ e · d · c

These are the only RA-linearizations possible. There is no
“global” linearization consistent with these per-object lin-
earizations: ordering addAfter(◦, a) before addAfter(◦, b)
implies that addAfter(◦, e) occurs before addAfter(◦, d)
which contradicts the second linearization above. We solve
this problem by constraining the composition operator ⊗ such
that intuitively, all objects share a common timestamp gener-
ator. This ensures that each new timestamp is bigger than the
timestamps used by operations delivered to a replica, indepen-
dently of the object to which they pertain. For instance, the
history of Fig. 10 would not be admitted because ts ′1 should
be bigger than ts3 (since the operation that received ts3 from
the timestamp generator originates from the same replica as
the operation receiving ts ′1 at a later time) and ts2 should be
bigger than ts ′2. These two constraints together with ts ′1 < ts ′2
contradict ts2 < ts3. While this requires a modification of
the algorithms, where the timestamp generator is a parameter,
this has no algorithmic or run-time cost, and in fact a similar
idea have been suggested in the systems literature (e.g. [10]).

We define a restriction ⊗ts of the object composition ⊗ such
that the set of histories h = (L, vis) in the composition o1⊗tso2
satisfy the property that the order between timestamps (of
all objects) is consistent with the visibility relation vis (i.e.,
vis ∪ ≺h is acyclic). With respect to the “unrestricted” com-
position ⊗ defined in Sec. 5.1, we only modify the transition
rule corresponding to generators, as shown in Fig. 11. This
ensures that a new generated timestamp is bigger than all the
timestamps “visible” to the replica executing that generator
(irrespectively of the object). The composition operator ⊗ts is
called shared timestamp generator composition. Practically, if
we were to consider the standard timestamp mechanism used
in CRDTs, i.e., each replica maintains a counter which is in-
creased monotonically with every new operation (originating
at the replica or delivered from another replica) and times-
tamps are defined as pairs of replica identifiers and counter
values, then ⊗ts can be implemented using a “shared” counter
which increases monotonically with every new operation,
independently of the object on which it is applied.

The following theorem shows that the composition of RA-
linearizable objects that admit execution-order or timestamp-
order linearizations is RA-linearizable, provided that all the
objects share the same timestamp generator.

Theorem 5.2. The shared timestamp generator composition
of a set of RA-linearizable objects that admit execution-order
or timestamp-order linearizations is RA-linearizable.

6 Mechanizing RA-Linearizability Proofs
To validate our approach, we considered a range of CRDTs
listed in Fig. 12 and mechanized their RA-linearizability
proofs using Boogie [4], a verification tool. More precisely,
we mechanized the proofs of conditions like Commutativity
and Refinement which imply RA-linearizability by the re-
sults in Section 4. Beyond operation-based CRDTs (discussed
in the paper), we have also considered state-based CRDTs,
where an update occurs only at the origin, and replicas ex-
change their states instead of operations, and states from other
replicas are merged at the replica receiving them. The merge
function corresponds to the least upper bound operator in a
certain join semi-lattice defined over replica states.

For operation-based CRDTs, we have mechanized the
proof of a strenghtening of Commutativity that avoids reason-
ing about traces and the proof of Refinement (or Refinementts).
Concerning Commutativity, our proofs encode two effectors
as a single procedure which executes on two equal copies
of the replica state. In some cases, the precondition of this
procedure encodes conditions which are satisfied anytime the
two effectors are concurrent, e.g., the effector of an add and
resp., remove of OR-Set are concurrent when the argument
k of add is not in the argument R of remove. At least for
the CRDTs we consider, such characterizations are obvious
and apply generically to any conflict-resolution policy based
on unique identifiers. In some cases, the effectors commute
even if they are not concurrent, so no additional precondition
is needed. We prove that the resulting states are identical after
performing the effectors in different order in each of the states.
Refinement (or Refinementts) is reduced to proving that the
refinement mapping is an inductive invariant for a lock-step
execution of the CRDT implementation and its specification.

For state-based CRDTs, we have identified a set of condi-
tions similar to those of operation-based CRDTs that imply
RA-linearizability (see [9]). In this case, we don’t rely on the
causal delivery assumption. Extending their semantics with
an auxiliary variable maintaining a correspondence between
replica states and sets of operations that produced them, we
extract the visibility relation between operations as in the case
of operation-based CRDTs. This enables a similar reasoning
about RA-linearizability. In particular, Commutativity is re-
placed by few conditions that now characterize the relation-
ship between applying operations at a given replica and the
merge function.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

CRDT Imp. Lin.
Counter [20] OB EO
PN-Counter [20] SB EO
LWW-Register [15] OB TO
Multi-Value Reg. [8] SB EO
LWW-Element Set [20] SB TO

CRDT Imp. Lin.
2P-Set [20] SB EO
OR-Set [20] OB EO
RGA [19] OB TO
Wooki [22] OB EO

Figure 12. CRDTs proved RA-linearizable and the class of
linearizations used. SB: State-Based, OB: Operation-Based,
EO: Execution-Order, TO: Timestamp-Order.

7 Related Work
Correctness Criteria. Burckhardt et al. [7] gives the first
formal framework where CRDTs and other weakly consistent
replicated systems can be specified. Their CRDT specifica-
tions are defined in terms of sets of partial orders as opposed
to our sequential specifications, which we think are easier to
reason about when verifying clients. Beyond simpler specifi-
cations, RA-linearizability is related to their formalization of
causal consistency, called causal convergence in [5]. Overall
RA-linearizability differs from causal convergence in three
points: (1) query-update rewritings, which enable sequential
specifications and avoid partial orders, (2) the linearization
projected on updates must be admitted by the specification
(intuitively, this ensures that the "final" convergence state
is valid w.r.t. the specification), and (3) the linearization is
required to be consistent with the visibility order from the exe-
cution, and not an arbitrary one as in causal convergence. The
latter difference makes causal convergence not compositional.

Regarding convergence, RA-linearizability implies that
there is a unique total order of updates, and therefore if at
some point all updates are visible to all replicas, all subse-
quent query operations at any replica will return the same
value. This is observably equivalent to strong eventual consis-
tency [12, 20, 23]. RA-linearizability is also stronger than the
session guarantees of Terry et al. [21], but weaker than sequen-
tial consistency [16] and linearizability [13]. RA-linearizable
objects that admit execution-order linearizations are close
to being linearizable since the operations are linearized as
they were issued at the origin replica, relative to wall-clock
time. This is similar to linearizability, where each operation
appears to take effect instantaneously between the wall-clock
time of its invocation its response. Unlike linearizability, RA-
linearizability allows queries to return a response consistent
with only a subsequence of its linearized-before operations.
Sequential Specifications for CRDTs. Perrin et al. [18] pro-
vides Update Consistency (UC), a criterion which to the best
of our knowledge is the first to consider sequential specifica-
tions and characterize linear histories of operations. However
UC is not compositional due to an existential quantification
over visibility relations like in causal convergence. Moreover,
Perrin et al. [18] doesn’t investigate UC proof methodologies.

Jagadeesan and Riely [14] provide a correctness criterion
called SEC, which differs from RA-linearizability in several
points: 1. Firstly, RA-linearizability has a global total order

for updates, unlike SEC whose definition is quite complex.
2. Secondly, CRDT specifications in SEC are parameterized
by a dependency relation at the level of the type’s API. Then,
SEC assumes that all independent operations commute and
disregards their order even when issued by the same client. It
is unclear how such a specification could adequately capture
systems enforcing session guarantees [21]. 3. While SEC is
also compositional, since operations from different objects
are assumed independent, a history of two different SEC ob-
jects is trivially SEC since the order between operations of
different objects is ignored. We find this notion of compo-
sition problematic since the composition of specifications
cannot capture causality between different objects, a common
pattern when writing distributed applications (e.g. for referen-
tial integrity in a key-value store). In RA-linearizability the
composition of a set of objects respects the client’s causal-
ity as illustrated by the failure to combine some per-object
linearizations in Fig. 9. 8

Verification of CRDTs There are several works that ap-
proach the problem of verifying that a CRDT implementation
is correct w.r.t. a specification. In [3, 6, 7] along with the for-
mal specification, proofs of correctness of implementations
are given for several CRDTs. Our Refinement property is
inspired by the Replication Aware Simulations in [7]. Zeller
et al. [23] and Gomes et al. [12] provide frameworks for the
verification of CRDTs in Isabelle/HOL. Their proofs are sim-
ilar to the simulations of [7], albeit in a different specification
language also based on partial orders.

8 Conclusion
We presented RA-linearizability, a correctness criterion in-
spired by linearizability, intended to simplify the specification
of CRDTs by resorting to sequential reasoning for the specifi-
cations. We provide proof methodologies for RA-linearizability
for some well documented CRDTs, and we prove that under
certain conditions these proofs guarantee the compositionality
of RA-linearizability. In the extended version of this paper [9]
we show how our techniques extend to state-based CRDTs.

There are some limitations of RA-linearizability. Firstly, as
we showed before, some CRDTs might not be RA-linearizable
under a certain API, but a slight change in the API renders
them RA-linearizable. We would like to investigate what con-
stitutes an API that enables RA-linearizability specifications.
secondly, while we argue that RA-linearizability simplifies
specifications, we leave as future work to show whether it can
be effectively used to verify client applications of a CRDT.

Acknowledgments
This work is partly supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 678177).

8There are however per-object linearizations for this history which can be
merged into a global linearization (see Sec. 5).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Enea, S. Mutluergil, G. Petri, and C. Wang

References
[1] [n. d.]. https://github.com/menesro/RA-linearizability-proofs
[2] Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement

Mappings. Theor. Comput. Sci. 82, 2 (1991), 253–284. https://doi.
org/10.1016/0304-3975(91)90224-P

[3] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Mor-
rison, Hongseok Yang, and Marek Zawirski. 2016. Specification
and Complexity of Collaborative Text Editing. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Comput-
ing, PODC 2016, Chicago, IL, USA, July 25-28, 2016. 259–268.
https://doi.org/10.1145/2933057.2933090

[4] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier
for Object-Oriented Programs. In Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures. 364–387.
https://doi.org/10.1007/11804192_17

[5] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza.
2017. On verifying causal consistency. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna
and Andrew D. Gordon (Eds.). ACM, 626–638. http://dl.acm.org/
citation.cfm?id=3009888

[6] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foun-
dations and Trends in Programming Languages 1, 1-2 (2014), 1–150.
https://doi.org/10.1561/2500000011

[7] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek
Zawirski. 2014. Replicated data types: specification, verification, op-
timality. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. 271–284. https://doi.org/10.1145/2535838.
2535848

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Siva-
subramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo:
amazon’s highly available key-value store. In Proceedings of the
21st ACM Symposium on Operating Systems Principles 2007, SOSP
2007, Stevenson, Washington, USA, October 14-17, 2007, Thomas C.
Bressoud and M. Frans Kaashoek (Eds.). ACM, 205–220. https:
//doi.org/10.1145/1294261.1294281

[9] Constantin Enea, Suha Orhun Mutluergil, Gustavo Petri, and Chao
Wang. 2019. Replication-Aware Linearizability. CoRR abs/1903.06560
(2019). arXiv:1903.06560 https://arxiv.org/abs/1903.06560

[10] Vitor Enes, Paulo Sérgio Almeida, and Carlos Baquero. 2017. The
Single-Writer Principle in CRDT Composition. In Proceedings of
the Programming Models and Languages for Distributed Comput-
ing (PMLDC ’17). ACM, New York, NY, USA, Article 4, 3 pages.
https://doi.org/10.1145/3166089.3168733

[11] Seth Gilbert and Nancy A. Lynch. 2002. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant web services.
SIGACT News 33, 2 (2002), 51–59. https://doi.org/10.1145/564585.
564601

[12] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and
Alastair R. Beresford. 2017. Verifying strong eventual consistency
in distributed systems. PACMPL 1, OOPSLA (2017), 109:1–109:28.
https://doi.org/10.1145/3133933

[13] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.
78972

[14] Radha Jagadeesan and James Riely. 2018. Eventual Consistency for
CRDTs. In Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018,

Thessaloniki, Greece, April 14-20, 2018, Proceedings. 968–995. https:
//doi.org/10.1007/978-3-319-89884-1_34

[15] Paul R. Johnson and Robert Thomas. 1975. Maintenance of dupli-
cate databases. RFC 677 (1975), 1–10. https://doi.org/10.17487/
RFC0677

[16] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Computers
28, 9 (1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

[17] Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward
Simulations: I. Untimed Systems. Inf. Comput. 121, 2 (1995), 214–233.
https://doi.org/10.1006/inco.1995.1134

[18] Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. 2014. Update
Consistency in Partitionable Systems. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX, USA, October 12-15,
2014. Proceedings. 546–549. http://link.springer.com/content/pdf/
bbm%3A978-3-662-45174-8%2F1.pdf

[19] Hyun-Gul Roh, Myeongjae Jeon, Jinsoo Kim, and Joonwon Lee.
2011. Replicated abstract data types: Building blocks for collabo-
rative applications. J. Parallel Distrib. Comput. 71, 3 (2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588

[21] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Mar-
vin Theimer, and Brent B. Welch. 1994. Session Guarantees for Weakly
Consistent Replicated Data. In Proceedings of the Third International
Conference on Parallel and Distributed Information Systems (PDIS 94),
Austin, Texas, USA, September 28-30, 1994. IEEE Computer Society,
140–149. https://doi.org/10.1109/PDIS.1994.331722

[22] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2007. Wooki: A P2P
Wiki-Based Collaborative Writing Tool. In Web Information Systems
Engineering - WISE 2007, 8th International Conference on Web In-
formation Systems Engineering, Nancy, France, December 3-7, 2007,
Proceedings (Lecture Notes in Computer Science), Boualem Bena-
tallah, Fabio Casati, Dimitrios Georgakopoulos, Claudio Bartolini,
Wasim Sadiq, and Claude Godart (Eds.), Vol. 4831. Springer, 503–512.
https://doi.org/10.1007/978-3-540-76993-4_42

[23] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. For-
mal Specification and Verification of CRDTs. In Formal Techniques
for Distributed Objects, Components, and Systems - 34th IFIP WG 6.1
International Conference, FORTE 2014, Held as Part of the 9th Inter-
national Federated Conference on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014. Proceedings. 33–48.
https://doi.org/10.1007/978-3-662-43613-4_3

https://github.com/menesro/RA-linearizability-proofs
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1007/11804192_17
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
http://arxiv.org/abs/1903.06560
https://arxiv.org/abs/1903.06560
https://doi.org/10.1145/3166089.3168733
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.17487/RFC0677
https://doi.org/10.17487/RFC0677
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1006/inco.1995.1134
http://link.springer.com/content/pdf/bbm%3A978-3-662-45174-8%2F1.pdf
http://link.springer.com/content/pdf/bbm%3A978-3-662-45174-8%2F1.pdf
https://doi.org/10.1016/j.jpdc.2010.12.006
https://hal.inria.fr/inria-00555588
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1007/978-3-540-76993-4_42
https://doi.org/10.1007/978-3-662-43613-4_3

	Abstract
	1 Introduction
	2 Overview
	2.1 RGA CRDT Implementation
	2.2 OR-Set CRDT Implementation

	3 Replication-Aware Linearizability
	3.1 The Semantics of CRDT objects
	3.2 Sequential Specifications
	3.3 Definition of Replication-Aware Linearizability

	4 Proving Replication-Aware Linearizability
	4.1 Execution-Order Linearizations
	4.2 Timestamp-Order Linearizations

	5 Compositionality of RA-Linearizability
	5.1 Object Compositions and RA-Linearizability
	5.2 Composition: Execution-Order Linearizability
	5.3 Composition: Timestamp-Order Linearizability

	6 Mechanizing RA-Linearizability Proofs
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

