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Abstract. We present a linearizability proof for the Chase-Lev work-
stealing queue (WSQ) on sequentially consistent (SC) memory. We used
the CIVL proof system for verifying refinement of concurrent programs.
The lowest-level description of the WSQ is the data structure code des-
cribed in terms of fine-grained actions whose atomicity is guaranteed by
hardware. Higher level descriptions consist of increasingly coarser action
blocks obtained using a combination of Owicki-Gries (OG) annotations
and reduction and abstraction. We believe that the OG annotations (lo-
cation invariants) we provided to carry out the refinement proofs at each
level provide insight into the correctness of the algorithm. The top-level
description for the WSQ consists of a single atomic action for each data
structure operation, where the specification of the action is tight enough
to show that the WSQ data structure is linearizable.
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1 Introduction

Work stealing is a widely accepted and applied method for scheduling tasks
used by many programming languages, run-time systems and frameworks that
support distribution of computation into tasks in shared-memory parallel pro-
grams. Work stealing queue data structures constitute the core of this method.
The queue keeps a pool of tasks to be executed and provides methods to threads
for putting and taking tasks from the pool. The WSQ algorithm must provide
certain guarantees such as the same task cannot be scheduled twice or given
sufficient number of requests, all the tasks in the pool are scheduled. These
guarantees are vital for the correct functioning of the system.

In this study, we verify the Chase-Lev WSQ algorithm [2], a widely-used
non-blocking algorithm, by providing a linearizability proof for its sequentially
consistent (SC) executions. Starting with fine-grained concurrent method bodies,
we obtain atomic method abstractions. Those abstractions are tight enough to
show that the WSQ algorithm satisfies the desired properties.

The proof is performed using the CIVL proof system [5] and it has four
layers1. At the bottom layer, method bodies consist of fine-grained atomic state-
ments supported by most hardware and programming languages. In the following

1 CIVL proof files can be obtained from: http://msrc.ku.edu.tr/projects/chase-lev-
wsq/.
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layers, atomic blocks inside the method bodies grow using abstraction, reduction
and location annotations until we obtain the desired abstract atomic bodies of
the methods at the fourth layer (depicted in the top rows of Figures 2 and 3).

This study has the following contributions and results:

– We present the first mechanized linearizability proof of the Lev-Chase work
stealing queue algorithm for its SC executions using a proof system.

– Obtaining correct location and mover annotations for the fine-grained met-
hod bodies require reasoning about all possible interleavings of the program.
We believe that the proof annotations at lower layers provide insight about
the behavior of SC executions of this program.

– Our proof is based on two important techniques: Owicki-Gries [11] and Lip-
ton’s reduction/abstraction [8] method. We show that the combined use of
these two techniques is powerful, and each is best suited to carry out certain
parts of the reasoning.

Section 2 gives an overview of the Chase-Lev work stealing queue algorithm.
In Section 3, we give a brief information about the proof techniques we utilized.
Details of the mechanized proof are presented in Section 4. We compare our work
with related studies in Section 5 and finish with closing remarks and future work
in Section 6. Some observations on the WSQ algorithm that will be useful for
our proofs are put on Appendix A. Initial abstractions/simplifications on the
algorithm applied before the mechanized proof are explained in Appendix B.

2 The Chase-Lev Work Stealing Queue Algorithm

Operations effecting one of the worker thread’s queue in the Chase-Lev WSQ
algorihtm is presented in Figure 1 using the programming language CIVL.

Shared variables H, T and items represent the current head (top), tail
(bottom) and the task pool, respectively. Tasks are assumed to be of type int.
The items has an infinite domain. Hence, it is never required to resize it due to
an overflow and we do not need to think of it as a circular array.

The put and take methods are executed exclusively by the worker thread
(called ptTid in short from now on). The put method adds one more element
to the tail of the queue.

The take method first reserves the last element by decrementing T by one
(Line 2). If it observes an empty queue, then it increments T back and returns
an EMPTY task (if block at Line 4). If it observes more than one elements in the
queue, it returns the element at index T (if block at Line 9). If there is a single
element in the queue, the ptTid tries to take it by a CAS operation (Line 11).

The steal method is executed by a stealer thread. If it sees the queue empty,
it returns EMPTY task (if block at Line 4). Otherwise, it iteratively tries to steal
an element by incrementing H by one via a CAS statement. If CAS is successful,
then steal returns successfully with the element at index H (If block at Line 9).
If CAS is not successful, then the current element at index h is stolen or taken.
Hence, steal tries to steal another element in a new iteration.
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H: in t ;
T: i n t ;
items : [ i n t ] i n t ;

put ( task : i n t )
{
var t : i n t ;

1 t := T;
2 items [ t ] := task ;
3 T := t+1;
4 return ;
}

take ( ) : ( task : i n t )
{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 h := H;
4 i f ( t<h)
{

5 T := h ;
6 task := EMPTY;
7 return ;
}

8 task := items [ t ] ;
9 i f (h<t )
{

10 return ;
}

11 [ i f (h==H)
{
H := h+1;
chk := true ;
}
e l s e
{
chk := f a l s e ;
} ]

12 i f ( ! chk )
{

13 task := EMPTY;
}

14 T := t+1;
15 return ;
}

s t e a l ( ) : ( task : i n t )
{
var h , t : i n t ;
var chk : bool ;

1 whi le ( t rue )
{

2 h := H;
3 t := T;
4 i f (h>=t )

{
5 task := EMPTY;
6 return ;

}
7 task := items [ h ] ;
8 [ i f (h==H)

{
H := h+1;
chk := true ;
}
e l s e
{
chk := f a l s e ;
} ]

9 i f ( chk )
{

10 return ;
}
}

11 return ;
}

Fig. 1. Chase-Lev Work Stealing Queue Algorithm

The behavior of the methods explained above is easily provable if they execute
sequentially. However, we assume SC setting such that execution of methods
could be interleaved with operations of other threads but operations of the same
thread appear in the sequence of program order to itself and other threads. SC
is one of the strongest guarantees that can be given for a concurrent program.
Yet it is still more difficult to reason about program correctness in SC then in
sequential setting since one needs to consider all possible thread interleavings.
We present more detailed observations about the SC executions of the WSQ
algorithm in Appendix A.

Our linearizability proof begins with a slightly modified version of the WSQ
algorithm presented in Figure 1 based on valid abstractions/simplifications ex-
plained in Appendix B.

3 Overview of Proof Methodology

In this section, we provide some important techniques we utilize in our proof
and supported by the proof system CIVL. We only give high-level definitions
and explain how we utilized them. Formal definitions of the concepts described
here can be found in [3] and [5].

The language CIVL is specially developed for verification purposes. It al-
lows usual constructs existing in many imperative programming languages and
some additional constructs for verification purposes. A CIVL program consists
of method bodies and atomic actions. Method bodies contain usual imperative
constructs like assignments, sequencing, conditional statements, loops, method
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calls, thread creation and atomic action calls. Atomic actions consist of single-
state location annotations and two-state transition relations.

The method bodies are partitioned into steps. CIVL allows programmers
to decide on the granularity of a step in a method body. Hence, a step may
contain multiple statements. Atomic actions are single step. We denote steps
inside brackets in this paper. A program executes by picking a thread non-
deterministically and executing a non-deterministic number of next steps of this
thread. An execution is obtained using the SC memory model by interleaving
steps from different threads. If the location annotation of an atomic action does
not hold in a state of an execution just before executing this action, the program
fails. The program is safe if no execution fails the location annotation of an
atomic action.

To check safety of a program, CIVL utilizes Owicki-Gries (OG) reasoning
[11]. The OG checks two things: i) a location annotation holds after a thread
takes a step (sequential correctness) and ii) the location annotation is preserved
by concurrent threads (non-interference). In addition to the location annotations,
CIVL allows programmers to write method pre- and post-conditions. They are
also checked via OG reasoning. Moreover, programmers can write conditions to
be satisfied inside the atomic blocks as assert statements. Correctness of these
statements are checked again by OG reasoning without the non-interference part.

CIVL enables programmers to grow atomic steps inside the procedure bodies
using a technique called reduction. To achieve this, each atomic action is anno-
tated with R, L, N or B tags standing for right-, left-, non- and both-movers.
A sequence of steps that begins with a sub-sequence of right- or both-movers,
followed by an optional non-mover, followed by a sub-sequence of left-movers
or both-movers could form a single atomic step. CIVL also performs a check to
validate that the atomic action conforms to its mover type. An action A is a
right-mover if executing A first and then an action B from another thread in
all executions can be simulated by first executing B and then A. A dual defini-
tion applies for left-movers. An action is a both-mover (non-mover) if it is both
(neither) right-mover and (nor) left-mover.

A layer in CIVL is a program and CIVL performs refinement proofs in a
sequence of layers. While moving from one layer to the next layer, CIVL allows
programmers to abstract atomic actions so that they have more behavior in the
next layer. Hence, they have more relaxed location annotations and they can
make actions from other threads mover and grow the steps of method bodies
in the next layer. For instance, havoc is a keyword in CIVL, used for assigning
non-deterministic values to variables. havoc x action abstracts x := t action
since the former statement allows variable x to have a range of values including
the latter value t.

Another option that a programmer can benefit from between layers is the
method abstraction. It allows programmers to replace a method body with a
single atomic action. This method enables programmers to increase granularity
of the program by replacing fine-grained method bodies with a single coarser
action block. CIVL also performs a check between layers to validate method
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abstraction. An atomic action A abstracts a method body B if and only if A
abstracts a single step of B in all possible execution paths of B and all the other
steps of B in this execution path refines skip. Moreover, the return variable must
not be modified after the step that refines A. From now on, we call the step that
refines A as the action block.

CIVL validates that the program at the bottom layer refines the program at
the top-layer if the OG and mover checks pass for all layers and action abstraction
and method abstraction checks pass between all layers.

CIVL allows the programmers to use primitive types like boolean or integer
and allow users to define their own types. Moreover, it supports linear variables.
Difference of a linear variable from a regular variable is that value inside a
linear variable cannot be duplicated. Since thread identifiers are unique, we use
linear thread identifiers. We modify methods such that each thread gets a linear
variable tid as input. For take and put methods, we know that tid must have
the value ptTid and for steal method, tid must be different than ptTid. This
additional information makes CIVL know that put and take methods cannot
be concurrent whereas steal can be concurrent with other methods and itself.

We heavily utilize the techniques above in our proof. In all layers, we provide
location annotations that show the relation between the global variables H and
T . Those annotations play a crucial role during the method abstractions between
layers and mover checks inside the layers. We start with a relatively complicated
relation between those global variables in fine-grained method bodies of lower
layers. As the methods get coarser at later layers, we establish H ≤ T as a global
location annotation.

At the end of Layer 0, we abstract some of the atomic actions so that steps
inside the method bodies of put and sub-methods of take could grow bigger
via reduction. Consequently, method bodies of put and sub-methods of take

contain single steps at the end of Layer 1. Then, we can turn them into atomic
actions in Layer 2 by applying method abstraction. Since all of the sub-methods
of take turn into atomic actions at Layer 2, we can use method abstraction
at the end of Layer 2 to obtain the desired atomic action of take at Layer 3.
Moreover, H ≤ T becomes a global location invariant at Layer 2 and it enables
us to use method abstraction at the end of Layer 2 on the steal method to
obtain desired atomic action of steal at Layer 3.

4 Mechanized Proof Steps

In this section, we present the mechanized proof of the WSQ algorithm. A sche-
matic of the proof is given in Figures 2 and 3. Before diving into details of the
proof, we provide a brief explanation about the programs in these figures. Num-
bers inside the method bodies correspond to steps or control points of those
methods. Atomic actions are written inside the brackets. We may omit the brac-
kets if the atomic action consists of a single statement. Location annotations of
atomic actions are given between 〈 and 〉 symbols. If a location annotation has
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Layer s t e a l ( l i n e a r t i d : Tid ) : ( task : i n t ) put ( l i n e a r t i d : t id , task : i n t )

3

〈stTid ∧ H ≤ T ∧ !tics〉
[ goto 1A, 1B;
1A: assume H<T;

task := items [H ] ;
H :=H+1;
return ;

1B: assume H<=T;
task :=EMPTY;
return ; ]

〈ptInv()〉
[ i tems [T] := task ;
T := T+1;]

2

pre : 〈stTid(tid) ∧ ticsCond() ∧ !tics〉
post : 〈stTid(tid) ∧ ticsCond() ∧ !tics〉
{

1 〈... ∧ !tics〉
h := H;

2 〈... ∧ !tics〉
[ i f (h<T)

assume h==H ==> H<T;
e l s e
assume h>=y ; ]

3 i f (h >= t )
{

4 task := EMPTY;

5 〈... ∧ !tics〉 return ;
}

6 〈... ∧ !tics〉
[ a s s e r t ! t i c s && h==H ==> H<T;
i f (h==H)
task := items [ h ] ;

e l s e
havoc ( task ) ; ]

7 〈... ∧ !tics ∧
(H=h → task = items[h])〉
[ assume H == h ; H := h+1;]

8 〈... ∧ !tics〉 return ;
}

〈ptInv()〉
[ i tems [T] := task ;
T := T+1;]

1

pre : 〈stTid(tid) ∧ ticsCond()〉
post : 〈stTid(tid) ∧ ticsCond()〉
{

1 〈...〉 [N] h := H;

2 〈...〉 [N]
[ i f (h<T)

assume h==H ==> H<T;
e l s e
assume h>=y ; ]

3 i f (h >= t )
{

4 [B] task := EMPTY;

5 〈...〉 return ;
}

6 〈...〉 [N]
[ a s s e r t ! t i c s && h==H ==> H<T;
i f (h==H)
task := items [ h ] ;

e l s e
havoc task ; ]

7 〈...〉 [N]
[ assume H == h ; H := h+1;]

8 〈...〉 return ;
}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{
〈ptInv()〉

1 [R] t := T;
2 [R] [ a s s e r t t==T && ! t i c s ;

items [ t ] := task ; ]
3 [N] T := t+1;

4 〈ptInv()〉 return ;
}

0

pre : 〈stTid(tid) ∧ ticsCond()〉
post : 〈stTid(tid) ∧ ticsCond()〉
{

1 〈ticsCond()〉 h := H;

2 〈H≥h ∧ ticsCond()〉 t := T;

3 i f (h >= t )
{

4 〈ticsCond()〉 task := EMPTY;

5 return ;
}

6 〈 H≥h ∧ ticsCond()∧ ticsCond2(h)〉
task := items [ h ] ;

7 〈H≥h ∧ ticsCond() ∧ ticsCond2(h)〉
[ assume H == h ; H := h+1;]

8 〈ticsCond()〉 return
}

ticsCond():
(tics ⇒ H ≤ T+1) ∧ (!tics ⇒ H ≤ T)

ticsCond2(h:int):
(tics ∧ h=H ⇒ H ≤ T) ∧
(!tics ∧ h=H ⇒ H < T)

stTid(tid:Tid):
tid 6= NULL ∧ tid 6= ptTid

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T;

2 〈ptInv()〉
i tems [ t ] := task ;

3 〈ptInv()〉
T := t+1;

4 〈ptInv()〉 return ;
}

ptInv():
tid = ptTid ∧ !tics ∧ H ≤ T

Fig. 2. Proof layers for the mechanized proof of steal and put methods
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Layer take(linear tid:Tid):(task:int)

3

〈ptInv()〉
[ goto 1A, 1B, 1C;

1A: assume H==T; task := EMPTY; return ;
1B: assume H==T−1; task := items [T−1]; H := H+1; return ;
1C: assume H<T−1; T := T−1; task := items [T ] ; re turn ; ]

take1 ( l n r t i d : Tid ) :
( task : i n t )

take2 ( l n r t i d : Tid ) :
( task : i n t )

take3 ( l n r t i d : Tid ) :
( task : i n t )

2 〈ptInv()〉
[ assume H==T;
task := EMPTY; ]

〈ptInv()〉
[ assume H < T−1;
T := T−1;
task := items [T ] ; ]

〈ptInv()〉
[ goto 1A,1B;
1A: assume H==T;

task := EMPTY;
return ;

1B: assume H==T−1;
task := items [T−1];
H := H+1;
return ; ]

1

pre : 〈ptInv()〉
post : 〈ptInv()〉
{
〈ptInv()〉

1 [R] t := T−1;
2 [R] [T := t ;

t i c s := true ; ]
3 [R] assume h <= H && t<h ;
4 i f ( t<h)
{

5 [L ] [T :=h ;
t i c s := f a l s e ; ]

6 [B] task := EMPTY;

7 〈ptInv()〉 return ;
}
. . .
}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{
〈ptInv()〉

1 [R] t := T−1;
2 [R] [T := t ;

t i c s := true ; ]
3 [N] [ h := H;

assume h<t ;
t i c s := f a l s e ; ]

4 i f ( t<h)
. . .

8 [B] task := items [ t ] ;
9 i f (h<t )
{

10 〈ptInv()〉 return ;
}
. . .
}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{
〈ptInv()〉

1 [R] t := T−1;

2 [R] [T := t ;
t i c s := true ; ]

3 [R] assume h==t && h<=H;
4 i f ( t<h)

. . .
8 [B] task := items [ t ] ;
9 i f (h<t )

. . .
11 [N] [ i f (h==H)

H :=h+1;
chk := true ;

e l s e
chk := f a l s e ; ]

12 i f ( ! chk )
{

13 [B] task := EMPTY;
}

14 [L ] [T := t+1;
t i c s := f a l s e ; ]

15 〈ptInv()〉 return ;
}

0

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T−1;

2 〈ptInv() ∧ t=T-1 〉
[T := t ;
t i c s := true ; ]

3 〈t=T ∧ H≤T+1 ∧ tics〉
[ h := H;
assume t<h ; ]

4 i f ( t<h)
{

5 〈t=T ∧ h≤H ∧ H=T+1 ∧ tics〉
[T :=h ;
t i c s := f a l s e ; ]

6 〈 H≤T ∧ !tics〉
task := EMPTY;

7 〈 H≤T ∧ !tics〉
return ;
}
. . .
}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T−1;

2 〈ptInv()∧ t=T-1〉
[T := t ;
t i c s := true ; ]

3 〈t=T ∧ H≤T+1 ∧ tics〉
[ h := H;
assume h<t ;

t i c s := f a l s e ; ]

4 i f ( t<h)
. . .

8 〈t=T ∧ H≤T ∧ h<t ∧ !tics〉
task := items [ t ] ;

9 i f (h<t )
{

10 〈 H≤T ∧ !tics〉
return ;
}
. . .
}

pre : 〈ptInv()〉
post : 〈ptInv()〉
{

1 〈ptInv()〉
t := T−1;

2 〈ptInv()∧ t=T-1〉
[T := t ;
t i c s := true ; ]

3 〈t=T ∧ H≤T+1 ∧ tics〉
[ h := H;
assume h==t ; ]

4 i f ( t<h)
. . .

8 〈t=T ∧ h≤H ∧ H≤T+1 ∧ h=t ∧ tics〉
task := items [ t ] ;

9 i f (h<t )
. . .

11 〈t=T ∧ h≤H ∧ H≤T+1 ∧ h=t ∧ tics〉
[ i f (h==H)

H :=h+1;
chk := true ;

e l s e
chk := f a l s e ; ]

12 i f ( ! chk )
{

13 〈t=T ∧ H=T+1 ∧ tics〉
task := EMPTY;
}

14 〈t=T ∧ H=T+1 ∧ tics〉
[T := t+1;
t i c s := f a l s e ; ]

15 〈ptInv()〉
return ;
}

Fig. 3. Proof layers for the mechanized proof of take methods
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not changed since the previous layer, we denote this as 〈...〉 or if it is tightened
by adding a new constraint φ, we denote this as 〈... ∧ φ〉.

Mover annotations of the atomic actions are also present in brackets be-
fore atomic actions. R, L, B and N denote right-, left-, both- and none-mover,
respectively. We may omit the mover tag if the atomic action is labeled as non-
mover. Note that we may have labeled an action non-mover although it is a
mover, if it is not necessary for our proof.

Atomic actions or statements may contain constructs like assume, assert
and havoc which are special for verification. Semantics of havoc is explained
via an example in Section 3. The statements assume e or assert e cause an
execution to block (all threads’ next statement to execute becomes not enabled)
or fail, respectively, if the boolean expression e evaluates to false in the state
just before executing this statement. Otherwise, they are equivalent to skip.

For the take1, take2 and take3 methods some paths are unreachable due to
assume statements at Line 3. We omit the program text for the if blocks leading
to those paths in Figure 3 by representing them with three dots as in Line 4 of
take2 at Layer 0.

The programs contain a new boolean ghost variable named tics. A ghost
variable is similar to a regular variable with only difference that it does not
modify the program state i.e., its value is never assigned to a real program
variable. Its sole purpose is to guide CIVL during mover and OG checks.

The name tics is short for ”take in critical section”. We know from Obser-
vations 3-7 in Appendix A that H ≤ T can be temporarily violated inside the
take method. We say that take is in critical section if execution of take is in the
area that H ≤ T invariant can be violated. The tics is used to write location
annotations considering the current instruction of ptTid.

The proof consists of 4 layers. At the bottom layer (Layer 0), we start with
the method bodies that we obtained at the end of Appendix B. We decorate
the method bodies with location annotations to establish relation between H
and T global variables. While going from Layer 0 to Layer 1, we abstract some
of the actions of Layer 0 and we use reduction at Layer 1 to make bodies of
the put, take1, take2 and take3 methods single step. Between Layer 1 and
Layer 2, we use method abstraction on put, take1, take2 and take3 methods
and abstract them to single step atomic actions. In Layer 2, H ≤ T begins
to hold as a global location annotation since take1, take2 and take3 methods
become coarse enough. Finally, we apply method abstraction on take and steal

methods between Layer 2 and Layer 3 to obtain desired atomic actions for these
methods. In Layer 3, all the methods of the WSQ algorithm are in the form of
atomic actions.

Layer 0 We start with the program obtained after loop-peeling and path-splitting
explained in Appendix B. Only difference is the addition of the boolean tics

ghost variable. Taking Observations 3-7 into account, we set tics to true tem-
porarily inside the bodies of take methods and set it back to false at the point
where we think the H ≤ T condition is restored.
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We provide location annotations conforming the value of tics. In the met-
hods, we annotate the locations so that when tics is true, H ≤ T + 1 holds and
when tics is false, H ≤ T holds. This condition is expressed in the sub-formulae
called ticsCond provided after steal method. The condition when the tics is
true, is adjusted in precision. It is tight enough to continue proof in later layers
and relaxed enough to be satisfied after non-interference checks. For instance,
replacing it with H == T + 1 would be too tight and make it unsatisfiable.

H ≤ T is not a global invariant at Layer 0, but a relaxed version of it that we
call ticsCond is a global invariant. All the location annotations in the method
bodies and method pre- post-conditions imply ticsCond.

However, location annotations explained so far does not pass the OG check
directly. We need to make location annotations stronger.

First, ifH = T ∧ !tics or H = T+1∧tics holds at some state during execution
of a ptTid method, a successful CAS operation of a steal could interfere and
violate location annotation by incrementing H. We observe that this corner case
is not possible in real executions. H < T must hold if !tics or H < T + 1 must
hold if tics just before the execution of CAS action of steal. For this reason,
we introduce ticsCond2 function that reflects our condition and add it to the
annotations of Lines 6 and 7 of steal.

Adding ticsCond2 to location annotations of Lines 6 and 7 is still insufficient
because two concurrent steals may violate the ticsCond2. If h = H−1∧H = T−
1∧!tics holds just before a stealer thread t1 executes Line 6 and another stealer
thread t2 interferes at this point and performs a successful CAS and increments
H, we come up with a state satisfying h = H∧H = T∧!tics for t2 which violates
the ticsCond2. But we know that two successful steals cannot be concurrent by
Observation 2. This observation helps us to infer that H ≥ h holds during Lines
6 and 7 of the steal method (by Observation 1) which prevents the previous
erroneous execution sample. By adding H ≥ h on Lines 6 and 7 of steal, we
make sure that OG checks for location annotations of steal pass.

Second, methods of the WSQ modify global variables H and T by assigning
them local values of h and t. To show that these assignments do not violate the
conditions relating H and T , we need to relate local value t to value of T in
ptTid methods and h to H in steal, take1, take2 and take3 methods. Since
T is only modified by ptTid, adding t = T to location annotations of ptTid

methods is correct. By Observation 1, H is always non-decreasing. Hence H ≥ h
holds for all methods. Adding these two conditions to the location annotations
of certain lines is sufficient to show that modifications on global variables does
not violate the required conditions.

We omit the mover tags for this layer, since no reduction is performed at
Layer 0.

Layer 0 → Layer 1 Our aim for Layer 1 is to grow steps of take1, take2, take3
and put method bodies using reduction. For this reason, we abstract some of the
atomic actions between Layer 0 and Layer 1. Lines 2 and 6 of steal method and
Line 3 of take1 and take3 methods are abstracted for this purpose. Rationale
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behind these abstractions are explained in Layer 1 while explaining how the
actions satisfy their mover annotations.

Layer 1 We assign mover tags to atomic actions of put, take1, take2 and take3

methods so that we can grow the steps of the action blocks of these methods as
large as the ones we need.

First, let us explain how we grow the step of put method. Line 1 becomes
right-mover without any abstraction since it reads the global variable T which
is not modified by other threads. However, Line 2 of put method is not a right-
mover without abstraction since it may be modifying an index of items that is
read by Line 6 of steal. If h value of steal at Line 6 is equal to t value of put
at Line 3, they may be accessing the same index. Since action of put method
modifies this index, mover check fails. But, we observe that the actual value of
items[h] is not needed if h 6= H holds just before execution of Line 7 of steal

method. Moreover, we need to read the actual value of items[h] if H = h at Line
7 in order to know that steal returns the correct element. Hence, we abstracted
Line 6 of steal such that it assigns items[h] to task if h = H at Line 6 and
assigns a non-deterministic value to task otherwise.

Next, we enlarge the step of take1 method. Line 1 is a right-mover since
it is same as Line 1 of put method and Line 5 is a both-mover since it is a
local assignment. However, lines 2 and 6 are not movers in Layer 0. They do
not commute with Line 2 of steal method since Line 2 of steal reads the
global variable T which is modified by Line 2 (or Line 6) of take1 method. To
overcome this problem, let us explore what expect from Line 2 of steal method
in our proof. If steal observes h < t after execution of Line 2 and the value
of H has not changed yet, then ticsCond2 must hold if it continues execution
through Line 6. We may satisfy this condition by assuming only H < T holds
after Line 2 if h = H ∧ h < T holds just before Line 2. steal may continue
through the if block at Line 3 if it observes h < t before Line 2, since our top-
level implementation of steal allows it to return EMPTY even if H < T . But, if
steal observes h ≥ T before Line 2, it must enter the if block at Line 3 since the
WSQ is empty. Obtaining only this information after Line 2 would be sufficient
for abstracting steal on later layers.

Line 3 of take1 is not a right-mover at Layer 0 since it does not commute
with Line 7 of steal method. Instead of reading actual value of H at Line 3
of take1, we abstract to read a non-deterministic value less than or equal to
H. This abstract read can commute right of Line 7 of steal since after moving
right of Line 7 of steal local value h of take1 can have more distinct values
and it is tight enough to infer that h >= t. Consequently, we obtain a step for
take1 that spans lines through 1 to 6.

Lines 1 and 2 of take2 are right-movers due to reasons explained above.
Line 8 becomes a right-mover since steal does not modify the items array.
Consequently, lines from 1 to 8 of take2 form a step in Layer 1.

Mover annotations for take3 method also hold and lines from 1 to 14 become
a step. Reason for their correctness can be explained with the same arguments
above.
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Note that location annotations of Layer 1 are same as Layer 0. Abstractions
do not violate the conditions established at Layer 0.

Layer 1 → Layer 2 We apply method abstraction on put, take1, take2 and
take3 methods between Layer 1 and Layer 2 since action blocks of those methods
grow large enough at the end of Layer 1. We obtain the desired atomic action
for put method.

Layer 2 In this layer, we tighten the location annotations in steal method such
that they become the old condition and !tics. The OG checks pass for these new
tighter annotations because no step of the program leaves the tics true after
its execution at Layer 2.

In addition, we add a condition to location annotation of Line 7 of steal

stating that if the value of H had not changed since steal read it, the return
variable task contains items[H]. OG check for this condition passes since Line
6 of steal is tight enough to assign correct value to task if H = h. This extra
condition on the location invariant is crucial when we apply method abstraction
on steal.

Layer 2 → Layer 3 Between Layers 2 and 3, we apply method abstraction on
steal and take methods. These methods become atomic actions.

The reason we can not apply method abstraction on steal so far is that
location annotations of the action blocks of steal were not tight enough to
obtain the desired atomic action for steal. It was possible to perform a successful
CAS when H = T .

Applying method abstraction on take also becomes possible after Layer 2
since we obtained the atomic actions for its sub-methods at Layer 2.

Layer 3 All of the take, put and steal methods are atomic actions.
With these single atomic action bodies of the methods, it is easier to reason

about the WSQ algorithm. For instance, one can show that a task pushed into
deque cannot be taken or stolen more than once since take and steal methods’
top-level actions atomically increment H or decrement T after taking the first
or the last item from the queue.

5 Related Work

Due to its key importance in parallel sytems, there are various WSQ algorithms.
A notable one is presented in Cilk multi-threaded language [4]. This algorithm
is blocking and method bodies are protected by a global lock. Reasoning about
correctness of Cilk WSQ algorithm is simpler but it is not efficient due to its
blocking nature.

Another WSQ algorithm introduced by Arora et al [1] is non-blocking, but
it requires fixed size queues. This algorithm has been verified in [6] using a mo-
del checking approach. Model checking approach validates that the algorithm
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satisfies desired properties but it does not provide any insight about the beha-
vior of the algorithm. Hence, it is difficult to reason about some side-properties
and possible optimizations of the algorithm using this approach. The Chase-Lev
WSQ [2] we have studied is an improvement over [1] such that size of the queue
can grow without memory leaks.

Since work stealing queues are used in low-level task schedulers,the environ-
ment may provide weaker guarantees. It is known that executions of Chase-Lev
WSQ under TSO semantics show more behaviour than SC executions [9]. If
memory fences are inserted after Line 3 of put and Line 2 of take,non-SC be-
haviors are prevented [9]. In [7], a pen and pencil proof has been presented that
the Chase-Lev WSQ algorithm with previously mentioned memory fences sa-
tisfy some desired specifications. A modified version of the Chase-Lev WSQ is
presented in [10] such that it is correct under TSO memory-model if we know
the size of store buffers.

6 Conclusions and Future Work

In this study, we have performed a linearizability proof of the Chase-Lev WSQ
algorithm under SC semantics using proof tool CIVL. Lower layers of the proof
provide insight for the behavior of the SC executions and the top layer single
atomic block summaries of the methods are simple but tight enough to show the
desired properties.

We plan to extend this work to investigate behavior of the WSQ algorithm
under weak memory models like TSO by modeling the weak memory seman-
tics explicitly in CIVL. We are particularly interested in the behavior of the
executions and the properties satisfied in the absence of memory fences.
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A Observations on the SC Executions of the Program

In this section, we first present some observations on (full or partial) executions
of the WSQ algorithm with the finest-grained actions (the algorithm in Figure
1). They will be helpful for obtaining location annotations and enlarging atomic
blocks in upper layers.

Our initial observations are simple and they hold for full executions.
Observation 1: H is non-decreasing throughout an execution.
Observation 2: Let us call a steal operation successful if it returns a va-

lue other than EMPTY. Then, last iterations of two successful steals cannot be
concurrent.

Next, we want to understand the relation between global variables H and T .
For a sequential execution, one expects that H ≤ T invariant holds throughout
the execution. This is not true for the fine-grained SC execution. We observe
that H could exceed T in some special cases. However, this violations occur
temporarily if take method follows some paths and they begin to hold again
after take method finishes.

We examine execution portions (sub-sequences of executions) in a systematic
way to obtain observations showing relation between H and T variables.

Observation 3: If an execution portion consists of only concurrent steal ope-
rations, we observe that H ≤ T is preserved throughout the execution portion.

Observation 4: If an execution portion consists of a single put method concur-
rent with steal methods, then H ≤ T holds throughout this execution portion.

Next, we consider execution portions that has take method concurrent with
steal operations. The take method could follow three different paths by either
entering the if block in Line 4 (path 1), by entering the if block in Line 9 (path
2) or by not entering those if blocks and returning by Line 15 (path 3).

Observation 5: If an execution portion consists of path 1 of take method
concurrent with steals, then H ≤ T holds throughout this execution portion.

Observation 6: If an execution portion consists of path 2 of take method
concurrent with steals, then H ≤ T holds before Line 2 and after Line 14 of the
take method and H = T ∨ H = T + 1 holds between Lines 2 and 14 of take

method.
Observation 7: If an execution portion consists of path 3 of take method

concurrent with steals, then H ≤ T holds before Line 2 and after Line 5 of the
take method and H = T + 1 holds between Lines 2 and 5 of take method.
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B Path Splitting and Loop Peeling

In this section we present our initial abstractions on steal and take methods.
These abstractions are not performed by CIVL. Rather, they are obtained by
applying some proof rules that are not currently supported by CIVL. We explain
the rules and their applications in this section. Methods we obtained after initial
abstractions constitute the bottom layer of our mechanized proof.

s t e a l ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 whi le (∗)
{

2 h := H;
3 t := T;
4 assume h<t ;
5 task := items [ h ] ;
6 [ assume h != H;

chk := f a l s e ; ]
}

7 h := H;
8 t := T;
9 i f (h>=t )
{

10 task := EMPTY;
11 return ;
}

12 task := items [H ] ;
13 [ assume h==H;

H == h ; ]
14 return ;
}

s t e a l ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 whi le (∗)
{

2 havoc h , t , chk , task ;
}

3 h := H;
4 t := T;
5 i f (h>=t )
{

6 task := EMPTY;
7 return ;
}

8 task := items [H ] ;
9 [ assume h==H;

H == h ; ]
10 return ;
}

s t e a l ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 h := H;
2 t := T;
3 i f (h>=t )
{

4 task := EMPTY;
5 return ;
}

6 task := items [H ] ;
7 [ assume h==H;

H == h ; ]
8 return ;
}

Fig. 4. Initial abstractions on steal method

Our first abstraction is performed on steal method. If we consider the itera-
tions of the loop at Line 1 of steal before the last iteration, they do not modify
any global variable and value assigned to return variable is reset by the last ite-
ration. Moreover, value assigned to local variables by reading global variables are
also reread by the last iteration before using them. Hence, those iterations has
no important effect on OG annotations of other methods and they will not be
useful for the refinement proof of steal. Our aim is to abstract steal method
so that we do not need to deal with unsuccessful previous iterations of steal.

On the left-side of Figure 4, we have steal method obtained by peeling out
the last iteration of the while loop. All the unsuccessful iterations are captured
by the loop at Line 1. They are guaranteed to be unsuccessful by assume sta-
tements at lines 4 and 6. The last successful iteration is modeled from Line 7
on.

Lines 2, 3, 5 and 6 could be abstracted by havoc h, t, task, chk and line 4
can be abstracted by skip. With these abstractions, we obtain the method body
in the middle column of Figure 4. Since h, t, chk and task variables have non-
deterministic values at the beginning of steal, the whole loop at Line 1 could
be removed and we obtain the method at the right-side of Figure 4 as our basis
of steal for the mechanized proof.
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take ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 i f (∗)
{

2 task := take1 ( t i d ) ;
}
e l s e
{

3 i f (∗)
{

4 task := take2 ( t i d ) ;
}
e l s e
{

5 task := take3 ( t i d ) ;
}
}

6 return ;
}

take1 ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 [ h := H;

assume t<h ; ]
4 i f ( t<h)
{

5 T := h ;
6 task := EMPTY;
7 return ;
}

8 task := items [ t ] ;
9 i f (h<t )
{

10 return ;
}

11 [ i f (h==H)
{
H := h+1;
chk := true ;
}
e l s e
{
chk := f a l s e ;
} ]

12 i f ( ! chk )
{

13 task := EMPTY;
}

14 T := t+1;
15 return ;
}

take ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 [ h := H;

assume t>=h ;
assume t != h ; ]

4 i f ( t<h)
{

5 T := h ;
6 task := EMPTY;
7 return ;
}

8 task := items [ t ] ;
9 i f (h<t )
{

10 return ;
}

11 [ i f (h==H)
{
H := h+1;
chk := true ;
}
e l s e
{
chk := f a l s e ;
} ]

12 i f ( ! chk )
{

13 task := EMPTY;
}

14 T := t+1;
15 return ;
}

take ( l n r t i d : Tid ) :
( task : i n t )

{
var h , t : i n t ;
var chk : bool ;

1 t := T−1;
2 T := t ;
3 [ h := H;

assume t>=h ;
assume t==h ; ]

4 i f ( t<h)
{

5 T := h ;
6 task := EMPTY;
7 return ;
}

8 task := items [ t ] ;
9 i f (h<t )
{

10 return ;
}

11 [ i f (h==H)
{
H := h+1;
chk := true ;
}
e l s e
{
chk := f a l s e ;
} ]

12 i f ( ! chk )
{

13 task := EMPTY;
}

14 T := t+1;
15 return ;
}

Fig. 5. Initial abstractions on take method

For the take method, we want to separate take in such a way that we can
reason about each possible path separately. We use the following rule for this
purpose:

Rule 1: Let procedure foo has the following body:

{ s0; s1; s2;}

where s0 and s2 are sequence of statements and s1 is an atomic block. Then,
replacing this body with the following one is a valid abstraction of foo:

{ if(*){ s0; [s1;assume p;] s2; }

else { s0;[s1;assume !p;] s2;} }

where p is a boolean expression on local variables. The ∗ denotes a non-deterministic
value of true or false To obtain the desired method body in Figure 5, we apply
the following steps:

1. Apply Rule 1 to take in Figure 1 with taking s0, s1, s2 as lines 1,2; 3 and
4-15 respectively. We also pick p as h > t.

2. Collect statements inside the if block in the method take1 and statements
in the else part in the method take23.

3. Apply Rule 1 to take23 with the same line choices in step 1 but taking p as
h = t.

4. Collect the statements inside the if block of take23 in take2 method and
statements in the else part in take3 method.

5. Inline call of take23 inside the else block of take with its body.


