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Abstract. Linearizability is the de facto correctness criterion for concur-
rent data type implementations. Violation of linearizability is witnessed
by an error trace in which the outputs of individual operations do not
match those of a sequential execution of the same operations. Extensive
work has been done in discovering linearizability violations, but little
work has been done in trying to provide useful hints to the programmer
when a violation is discovered by a tester tool. In this paper, we propose
an approach that identifies the root causes of linearizability errors in the
form of code blocks whose atomicity is required to restore linearizability.
The key insight of this paper is that the problem can be reduced to a
simpler algorithmic problem of identifying minimal root causes of conflict
serializability violation in an error trace combined with a heuristic for
identifying which of these are more likely to be the true root cause of
non-linearizability. We propose theoretical results outlining this reduction,
and an algorithm to solve the simpler problem. We have implemented
our approach and carried out several experiments on realistic concurrent
data types demonstrating its efficiency.

1 Introduction

Efficient multithreaded programs typically rely on optimized implementations
of common abstract data types (adts) like stacks, queues, sets, and maps [31],
whose operations execute in parallel across processor cores to maximize per-
formance [36]. Programming these concurrent objects correctly is tricky. Syn-
chronization between operations must be minimized to reduce response time
and increase throughput [23, 36]. Yet this minimal amount of synchronization
must also be adequate to ensure that operations behave as if they were exe-
cuted atomically, one after the other, so that client programs can rely on the
(sequential) adt specification; this de-facto correctness criterion is known as
linearizability [24]. These opposing requirements, along with the general challenge
in reasoning about thread interleavings, make concurrent objects a ripe source of
insidious programming errors [12, 15, 35].

Program properties like linearizability that are difficult to determine statically
are typically substantiated by dynamic techniques like testing and runtime
? This work is supported in part by the European Research Council (ERC) under the
EU’s Horizon 2020 research and innovation program (grant agreement No 678177).
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verification. While monitoring linearizability of an execution against an arbitrary
adt specification requires exponential time in general [20], there exist several
efficient approaches for dealing with this problem that led to practical tools,
e.g., [3, 16, 4, 13, 14, 33, 39, 47]. Although these approaches are effective at
identifying non-linearizable executions of a given object, they do not provide
any hints or guidelines about the source of a non-linearizability error once one
is found. If some sort of root-cause for non-linearizability can be identified, for
example a minimal set of commands in the code that explain the error, then the
usability of such testing tools will significantly increase for average programmers.
Root-causing concurrency bugs in general is a difficult problem. It is easy enough
to fix linearizability if one is willing to disregard or sacrifice performance measures,
e.g., by enforcing coarse-grain atomic sections that span a whole method body.
It is difficult to localize the problem to a degree that fixing it would not affect
the otherwise correct behaviours of the adt. Simplifying techniques, such as
equating root causes with some limited set of “bad” patterns, e.g., a non-atomic
section formed of two accesses to the same shared variable [10, 38, 28] have been
used to provide efficient coarse approximations for root cause identifications.

In this paper, we present an approach for identifying non-linearizability root-
causes in a given execution, which equates root causes with optimal repairs that
rule out the non-linearizable execution and as few linearizable executions as
possible (from a set of linearizable executions given as input). Our approach can
be extended to a set of executions and therefore in the limit identify the root
cause of the non-linearizability of an adt as a whole. Sequential3 executions of a
concurrent object are linearizable, and therefore, linearizability bugs can always
be ruled out by introducing one atomic section per each method in the adt.
Thus, focusing on atomic sections as repairs, there is a guarantee of existence of
a repair in all scenarios. We emphasize the fact that our goal is to interpret such
repairs as root-causes. Implementing these repairs in the context of a concrete
concurrent object using synchronization primitives (eg., locks) is orthogonal and
beyond the scope of this paper. Some solutions are proposed in [28, 46, 29].

As a first step, we investigate the problem of finding all optimal repairs
in the form of sets of atomic sections that rule out a given (non-linearizable)
execution. A repair is considered optimal when roughly, it allows a maximal
number of interleavings. We identify a connection between this problem and
conflict serializability [37], an atomicity condition originally introduced in the
context of database transactions. In the context of concurrent programs, given a
decomposition of the program’s code into code blocks, an execution is conflict
serializable if it is equivalent4 to an execution in which all code blocks are executed
in a sequential non-interleaved fashion. A repair that rules out a non-linearizable
execution τ can be obtained using a decomposition of the set of events in τ into
a set of blocks that we call intervals, such that τ is not conflict serializable with
respect to this decomposition. Each interval will correspond to an atomic section

3 An execution is called sequential when methods execute in isolation, one after another.
4 Two executions are equivalent if roughly, they are the same modulo reordering
statements that do not access the same shared variable.
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Shared variables:

range: integer initialized to 0
items: array of objects

initialized to NULL

1 procedure push(x)
2 i := F&I(range);
3 items[i] := x

4 procedure pop()
5 t := range-1;
6 x := NULL;
7 for i := t downto 1 {
8 x := items[i];
9 items[i] := null;

10 if ( x != null ) break; }
11 return x;

Fig. 1: A non-linearizable concurrent stack.

in the repair (obtained by mapping events in the execution to statements in
the code). A naive approach to compute all optimal repairs would enumerate
all decompositions into intervals and check conflict-serializabiliy with respect to
each one of them. Such an approach would be inefficient because the number
of possible decompositions is exponential in both the number of events in the
execution and the number of threads. We show that this problem is actually
polynomial time assuming a fixed number of threads. This is quite non-trivial
and requires a careful examination of the cyclic dependencies in non conflict-
serializable executions. Assuming a fixed number of threads is not an obstacle in
practice since recent work shows that most linearizability bugs can be caught
with client programs with two threads only [12, 15].

In general, there may exist multiple optimal repairs that rule out a non-
linearizable execution. To identify which repairs are more likely to correspond to
root-causes, we rely on a given set of linearizable executions. We rank the repairs
depending on how many linearizable executions they disable, prioritizing those
that exclude fewer linearizable executions. This is inspired by the hypothesis that
cyclic memory accesses ocurring in linearizable executions are harmless.

We evaluated this approach on several concurrent objects, which are variations
of lock-based concurrent sets/maps from the Synchrobench repository [21]. We
considered a set of non-linearizable implementations obtained by modifying the
placement of the lock/unlock primitives, and applied a linearizability testing
tool called Violat [14] to obtain client programs that admit non-linearizable
executions. We applied our algorithms on the executions obtained by running
these clients using Java Pathfinder [44]. Our results show that our approach is
highly effective in identifying the precise root cause of linearizability violations
since in every case, our tool precisely identifies the root cause of a violation that
is discoverable by the client of the library used to produce the error traces.

2 Overview

Figure 1 lists a variation of a concurrent stack introduced by Afek et al. [1]. The
values pushed into the stack are stored into an unbounded array items; a shared
variable range keeps the index of the first unused position in items. The push
method stores the input in the array and it increments range using a call to an
atomic fetch and increment (F&I) primitive. This primitive returns the current
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push(a); || push(b);
r2 = pop();

|| r3 = pop();

// Thread 2: push(b)
  i = F&I(range) //0

  items[0] = b
// Thread 2: pop()
  t = range - 1 // 1
  x = items[1] // null
  items[1] = null
  x = items[0] // b

  items[0] = null
  return b

// Thread 1: push(a)
  i = F&I(range) // 1

  items[1] = a

𝖼𝖿

𝖼𝖿

𝖼𝖿

𝖼𝖿

// Thread 3: pop()
  t = range -1 // 1
  x = items[1] // null
  items[1] = null
  x = items[0] // b
  items[0] = null

  return b

Fig. 2: A client program of the concurrent stack of Figure 1 and one of its non-linearizable
executions illustrate as a sequence of read/write events.

value of range while also incrementing it at the same time. The pop method
reads range and then traverses the array backwards starting from the predecessor
of this position, until it finds a position storing a non-null value. It also nullifies
all the array cells encountered during this traversal. If it reaches the bottom of
the array without finding non-null values, it returns that the stack is empty.

This concurrent stack is not linearizable as witnessed by the execution in
Figure 2. This is an execution of a client with three threads executing two push
and two pop operations in total. The push in the first thread is interrupted by
operations from the other two threads which makes both pop operations return
the same value b. The execution is not linearizable because the value b was
pushed only once and it cannot be returned by two different pop operations.

The root-cause of this violation is the non-atomicity of the statements at
lines 8 and 9 of pop, reading items[i] and updating it to null. The stack is
linearizable when the two statements are executed atomically (see [1]).

Our goal is to identify such root-causes. We start with a non-linearizable
execution like the one in Figure 2. The first step is to compute all optimal repairs
in the form of atomic sections that disable the non-linearizable execution. There
are two such optimal repairs for the execution in Figure 2: (1) an atomic section
containing the statements at lines 8 and 9 in pop (representing the root-cause),
and (2) an atomic section that includes the two statements in the push method.

These repairs disable the execution because each pair of statements is inter-
leaved with conflicting5 memory accesses in that execution. This is illustrated

5 As usual, two memory accesses are conflicting when they access the same variable
and at least one of them is a write.
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by the boxes and the edges in Figure 2 labeled by cf: the boxes include these
two pairs of statements and the edges emphasize the order between conflicting
memory accesses. In Section 5, we formalize this by leveraging the notion of
conflict serializability. The execution is not conflict-serializable assuming any
decomposition of the code in Figure 1 into a set of code blocks (transactions)
such that one of them contains one of these two pairs. These repairs are optimal
because they consist of a single atomic section of minimal size (with just two
statements). We formalize a generic notion of optimality in Section 4 through
the introduction of an order relation between repairs, defined as component-wise
inclusion of atomic sections and compute the minimal repairs w.r.t. this order.

At the end of the first phase, our approach produces a set of all such optimal
(incomparable) repairs. To isolate one as the best candidate, we use a heuristic
to rank the optimal repairs. The heuristic relies on the hypothesis that repairs
which disable fewer linearizable executions are more likely to represent the best
candidate for the true root-cause of a linearizability bug.

For instance, the client in Figure 2 admits a linearizable execution where the
first two threads are interleaved exactly as in Figure 2 and where the pop in the
third thread executes after the first two threads finished. This is linearizable
because the pop in the third thread returns the value a written by the push in
the first thread in items[1] (this is the first non-null array cell starting from the
end). Focusing on the two optimal repairs mentioned above, enforcing only the
atomic section in the push will disable this linearizable execution. The atomic
section in the pop, which permits this execution, is ranked higher to indicate it
as the more likely root-cause. This is the expected result for our example.

This ranking scheme can easily be extended to a set of linearizable executions.
Given a set of linearizable executions, we rank optimal repairs by keeping track
of how many of the linearizable executions each disables.

3 Preliminaries

We formalize executions of a concurrent object as sequences of events representing
calling or returning from a method invocation (called operation), or an access (read
or write) to a memory location. Then, we recall the notion of linearizability [24].

We fix arbitrary sets M and V of method names and parameter/return values.
We fix an arbitrary set O of operation identifiers, and for given sets M and V
of methods and values, we fix the sets C = {o.call m(v) : m ∈M, v ∈ V, o ∈ O}
and R = {o.ret v : v ∈ O, o ∈ O} of call actions and return actions. Each
call action o.call m(v) combines a method m ∈ M and value v ∈ V with
an operation identifier o ∈ O. A return action o.ret v combines an operation
identifier o ∈ O with a value v ∈ V. Operation identifiers are used to pair
call and return actions. Also, let L be a set of (shared) memory locations and
A = {o.rd(x), o.wr(x) : o ∈ O, x ∈ L} the set of read and write actions. The
operation identifier of an action a is denoted by op(a).

We fix an arbitrary set T of thread ids. An event is a tuple 〈t, a〉 formed of
a thread id t ∈ T and an action a. A trace τ is a sequence of events satisfying
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standard well-formedness properties, e.g., the projection of τ on events of the
same thread is a concatenation of sequences formed of a call action, followed by
read/write actions with the same operation identifier, and a return action. Also,
we assume that every atomic section (block) is interpreted as an uninterrupted
sequence of events that correspond to the instructions in that atomic section.

We define two relations over the events in a trace τ : the program order relation
poτ relates any two events e1 and e2 of the same thread such that e1 occurs
before e2 in τ , and the conflict relation cfτ relates any two events e1 and e2 of
different threads that access the same location, at least one of them being a write,
such that e1 occurs before e2 in τ . We omit the subscript τ when the trace is
understood from the context.

Two traces τ1 and τ2 are called equivalent, denoted by τ1 ≡ τ2, when poτ1 =
poτ2 and cfτ1 = cfτ2 . They are called po-equivalent when only poτ1 = poτ2 .

The projection of a trace τ over call and return actions is called a history and
denoted by h(τ). A history is sequential when each call action c is immediately
followed by a return action r with op(c) = op(r). A linearization of a history h1
is a sequential history h2 that is a permutation of h1 that preserves the order
between return and call actions, i.e., a given return action occurs before a given
call action in h1 iff the same holds in h2.

A library L is a set of traces6. A trace τ of a library L is linearizable if L
contains some sequential trace whose history is a linearization of h(τ). A library is
linearizable if all its traces are linearizable7. In the following, since linearizability
is used as the main correctness criterion, a bug is a trace τ that is not linearizable.

4 Linearizability Violations and Their Root Causes

Given a non-linearizable library, our goal is to identify the root cause of non-
linearizability in the library code. Let us start by formally describing the state
space of all such causes and state some properties of the space that will aid
the understanding of our algorithm. First, our focus is on a specific category
of causes, namely those that can be removed through the introduction of new
atomic code blocks to the library code without any other code changes.

Definition 1 (Non-linearizability Root Cause). For a non-linearizable li-
brary L, the root cause is formally identified by R, a set of atomic blocks A such
that L is linearizable with the addition of blocks from A.

Observe that the set of atomic blocks identified in Definition 1 can conceptually
be viewed as blocks of code whose non-atomicity is the root cause of non-
linearizability and their introduction would repair the library. For the rest of this
paper, we use the two terminologies interchangeably since for this specific class,
6 Intuitively, this corresponds to running a concrete library under a most general client
that makes an arbitrary number of invocations from an arbitrary number of threads.

7 Linearizability is typically defined with respect to a sequential ADT. Here, we take
the simplifying assumption that the ADT is defined by the set of sequential histories
of the library. This holds for all concurrent libraries that we are aware of.
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the two notions perfectly coincide. The immediate question that comes to mind
is whether Definition 1 is general enough. Observe that since linearizability is
fundamentally an atomicity type property for individual methods in a library, if
every single method of the library is declared atomic at the code level, then the
library is trivially linearizable. The only valid executions of the library are the
linear (sequential) executions in this case. Therefore,

Remark 1. Every non-linearizable library can be made linearizable by adding
atomic code blocks in R according to Definition 1.

Since there always is a trivial repair, one is interested in finding a good one.
The quality of a repair is contingent on the amount of parallelism that the addition
of the corresponding atomic blocks removes from the executions of an arbitrary
client of the library. Generally, it is understood that the fewer the number of
introduced atomic blocks and the shorter their length, the more permissive they
will be in terms of the parallel executions of a client of this library. This motivates
a simple formal subsumption relationship between repairs of a bug. We say an
atomic code block b subsumes another atomic code block b′, denoted as b wc b′,
if and only if b′ is contained within b.

Definition 2 (Repair Subsumption). A repair R subsumes another repair
R′, we write R wc R′ if and only if for all atomic blocks b′ ∈ R′, there exists an
atomic block b ∈ R such that b wc b′.

It is easy to see that wc is a partial order, and combined with the finite set of
all possible program repairs gives rise to the concept of a set of optimal repairs,
namely those that do not subsume any other repair. It can be lifted to sets of
repairs in the natural way: R wc R′ iff ∀R′ ∈ R′,∃R ∈ R : R wc R′.

Remark 2. The set of traces of a library L with a repair R is a superset of the
set of traces of L with the repair R′ if R′ wc R.

This means that an optimal repair identification according to Definition 2
should lead to an optimal amount of parallelism in the library repaired by forcing
the corresponding code blocks to execute atomically. The goal of our algorithm
is to identify such a set of optimal repairs.

Now, let us turn our attention to an algorithmic setup to solve this problem.
The non-linearizability of a library L is witnessed by a non-empty set of non-
linearizable traces T . These are the concrete erroneous traces of (a client of) the
library, for which we intend to identify the repair.

Note that if τ is a non-linearizable trace, then all the traces τ ′ that are
equivalent to τ are also non-linearizable. Indeed, if τ ′ is equivalent to τ , then the
values that are read in τ ′ are the same as in τ8, which implies that the return
values in τ ′ are the same as in τ , and therefore, τ ′ is non-linearizable when τ is.

Consider a conceptual oracle, OL(T ), that takes a set of non-linearizable
traces of a library L and produces the set of all optimal repairs R such that
each R ∈ R excludes all the traces that are equivalent to those in T . Then the
following iterative algorithm produces R for a library L:
8 We assume that program instructions are deterministic, which is usually the case.
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1. Let T = ∅ and R = ∅.
2. Check if L with the addition of atomic blocks from R is linearizable:

– Yes? Return R.
– NO? Produce a set of non-linearizability witnesses T ′ and let T = T ∪ T ′.

3. Call OL(T ) and update the set of repairs R with the result.
4. Go to back to step 2.

Proposition 1. The above algorithm produces an optimal set of repairs R that
make its input library linearizable.

It is easy to see that if oracle OL(T ) can be relied on to produce perfect results,
then the algorithm satisfies a progress property in the sense that Rk+1 wc Rk,
where Rk is the value of R in the k-th iteration of the loop. Following Remark 1,
this chain of increasingly stronger repairs is bounded by the specific repair in
which every method of the library L has to be declared atomic. Therefore, the
algorithm converges. The assumption of optimality for OL(T ) implies that on
the iteration that the algorithm terminates, it will produce the optimal R.

Note that in oracle OL, the focus shifts from identifying the source of error
for the entire library to identifying the source of error in a specific set of non-
linearizability witnesses. First, we propose a solution for implementing OL for
a singleton set, i.e. precisely one error trace, and later argue why the solution
easily generalizes to finitely many error traces.

4.1 Repair Oracle Approximation

Given a trace τ as a violation of linearizability, we wish to implement OL that
takes a single trace τ and proposes an optimal set of repairs for it.

Observe that if every trace of L is conflict serializable [37] (i.e., equivalent to
a sequential trace), assuming method boundaries as transaction boundaries, then
it is necessarily linearizable. Therefore, knowing that it is not linearizable, we can
conclude that there exists some trace of L which is not serializable. Following the
same line of reasoning, we can conclude that the error trace τ itself is not conflict
serializable, for some choice of transaction boundaries. This observation is the
basis of our solution for approximating repairs for non-linearizability through an
oracle that is actively seeking to repair for non-serializability violations.

Definition 3 (Trace Eliminator). For an error trace (a bug) τ , a set of atomic
blocks R is called a trace eliminator if and only if every trace that is equivalent
to τ is not a trace of the new library with the addition of blocks from R.

Any trace eliminator that removes τ as a valid trace of a client of the library
L (and all the traces equivalent to τ), by amending the library for the conflict
serializability violation, (indirectly) eliminates it as a witness to non-linearizability
as well. Note that the universes of trace eliminators and non-linearizability repairs
are the same set of objects, and therefore the subsumption relation wc is well
defined for trace eliminators, and the concept of optimality is similarly defined.
Moreover, Definition 3 is agnostic to linearizability and can be interchangeably
used for serializability repairs.
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Theorem 1. R is a trace eliminator for τ if and only if τ is not conflict serializ-
able with transaction boundaries that subsume R (statements that are not included
in the atomic sections from R are assumed to form singleton transactions).

Proof. (Sketch) For the if direction, assume by contradiction that R is not a
trace eliminator for τ . This implies that there exists a trace τ ′ ≡ τ where the
sequences of events corresponding to the atomic sections in R occur uninterrupted
(not interleaved with other events). This is a direct contradiction to τ not being
conflict serializable when transaction boundaries are defined precisely by the
atomic sections in R. For the only if direction, assume by contradiction that τ
is conflict serializable. By definition, there is an equivalent trace τ ′ where the
sequences of events corresponding to the atomic sections inR occur uninterrupted.
Therefore, the library L′ obtained by adding the atomic code blocks in R admits
τ ′, which contradicts the fact that R is a trace eliminator for τ .

The relationship between the set of trace eliminators for τ and OL(τ) can be
made precise. Since every trace eliminator is a linearizability repair by definition,
but not necessarily an optimal one, we have:

Proposition 2. Let OL(τ) represent the optimal set of repairs that eliminate τ
as a witness to non-linearizability and R be the set of optimal trace eliminators
for τ . We have R ⊇ OL(τ).

This is precisely why the set of trace eliminators safely overapproximates
the set of linearizability repairs for a single trace. Note that Theorem 1 links
any trace eliminator (a set of code blocks) to a collection of dynamic (runtime)
transactions. It is fairly straightforward to see that given the latter as an input,
the former can be inferred in a way that the dynamic transactions generated by
the static code blocks are as close as possible to the input transaction boundaries,
assuming no structural changes occur in the code. In Section 5, we discuss how
an optimal set of dynamic transaction boundaries can be computed, which give
rise to a set of optimal trace eliminators.

4.2 Generalization to Multiple Traces

If we have an implementation for an oracle OL(τ) that takes a single trace and
produces the set of optimal trace eliminators for it, then the following algorithm
implements an oracle for OL({τ1, . . . , τn}) for any finite number of traces:

– Let R = ∅.
– For each τi (1 ≤ i ≤ n): let Ri = OL(τi).
– Let T = R1 × · · · × Rn.
– For each T ∈ T: let R = R ∪ flatten(T ).
– For each R ∈ R: if ∃R′ ∈ R s.t. R wc R′ then R = R− {R}.

where flatten(T ) basically takes the union of repairs suggested by individual
components of T while merging any overlapping atomic blocks. Note that the ith
component of T suggests an optimal trace eliminator for τi. If we want a tight
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combination of all such trace eliminators, we need the minimal set of atomic
blocks that covers all atomic blocks suggested by each eliminator. Formally:

flatten(〈R1, . . . ,Rn〉) = smallest R wrt wc st ∀1 ≤ i ≤ n : R wc Ri
we can then conclude:

Theorem 2. If OL(τ) produces the optimal set of trace eliminators for trace
τ , then the above algorithm correctly implements OL({τ1, . . . , τn}), that is, it
produces the optimal set of repairs for the set of error traces {τ1, . . . , τn}.

5 Conflict-Serializability Repairs
In this section, we investigate the theoretical properties of conflict serializability
repairs to provide a set up for an algorithm that implements the oracle OL for
a single input trace trace. The goal of this algorithm is to take a trace τ as an
input and return the optimal trace eliminator for τ , under the assumption that
τ witnesses the violation of linearizability.

5.1 Repairs and Conflict Cycles

We start by introducing a few formal definitions and some theoretical connections
that will give rise to an algorithm for identifying an optimal set of atomic blocks
that can eliminate a trace τ as a witness to violation of conflict serialiazability.

Definition 4 (Decompositions and Intervals). A decomposition of a trace
τ is an equivalence relation D over its set of events such that:
– D relates only events of the same operation, i.e. if (e1, e2) ∈ D, then op(e1) =

op(e2), and
– the equivalence classes of D are continuous sequences of events of the
same operation, i.e., if (e1, e3) ∈ D and {(e1, e2), (e2, e3)} ⊆ poτ , then
{(e1, e2), (e2, e3)} ⊆ D

The equivalence classes of a decomposition D, denoted by Iτ,D are called intervals.

Observe that the relation wc is well defined partial order over the universal
all possible intervals (of all possible decompositions) of a trace τ .

Definition 5 (Interval Graphs). Given a trace τ , and decomposition D, an
interval graph is defined as Gτ,D = (V,E) where the set of vertexes V is the set
of intervals of D and the set of edges E is defined as follows

E = {(i, i′)| i 6= i′ ∧ ∃e ∈ i, e′ ∈ i′ : (e, e′) ∈ poτ ∪ cfτ}

Since, by definition, each edge in the interval graph is induced by an edge
from either relation poτ or cfτ , but note both, we lift these relations over the
sets of intervals in the natural way, that is:

(i, i′) ∈ cfiτ ⇐⇒ ∃e ∈ i, e′ ∈ i′ : e 6= e′ ∧ (e, e′) ∈ cfτ

(i, i′) ∈ poiτ ⇐⇒ ∃e ∈ i, e′ ∈ i′ : e 6= e′ ∧ (e, e′) ∈ poτ
Given an interval graph edge (i, i′) ∈ cfiτ ∪ poiτ , let

tre(i, i′) = {(e, e′) | e ∈ i ∧ e′ ∈ i′ ∧ (e, e′) ∈ cfτ ∪ poτ}
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Fig. 3: An interval graph.

Figure 3 illustrates an interval graph.
Node oi : ej denotes an event ej of op-
eration oi. Events of the same thread are
aligned vertically. We draw only cfτ edges
since the poτ edges are implied by the ver-
tical alignment of events. Non-singleton
intervals of D are i1 = {e1, e2, e3, e4},
i2 = {e5, e6} and i3 = {e7, e8}. Singleton
intervals are identified by the correspond-
ing event identifiers. Edges among inter-
val nodes correspond to cfτ or poτ . For in-
stance, (i1, i2) ∈ cfiτ since (e1, e6) ∈ cfτ ,
e1 ∈ i1 and e6 ∈ i2. As an example
for the function tre, we have tre(i2, i3) =
{(e5, e7), (e5, e8), (e6, e7), (e6, e8)} that con-
sists of poτ edges and tre(i3, i1) =
{(e8, e3), (e8, e4)} that consists of cfτ edges.

For the degenerate decomposition in
which each event is an interval of size one by itself, the interval graph col-
lapses into a trace graph, denoted by Gτ . Note that Gτ is acyclic since the
relations poτ and cfτ are consistent with the order between the events in τ .

Intervals are closely related to the static notion of transactions and the induced
transaction boundaries on traces. For example, in the decomposition in which the
intervals coincide with the boundaries of transactions (e.g. method boundaries),
it is straightforward to see that the interval graph becomes precisely the conflict
graph [19] widely known in the conflict serializability literature. It is a known
fact that a trace is conflict serializable if and only if its conflict graph is acyclic
[37]. Since τ is not conflict serializable with respect to the boundaries of methods
from L, we know the interval graph with those boundaries is cyclic.

With intervals set as single events, Gτ is acyclic, and with the intervals
set at method boundaries, it is cyclic. The high level observation is that there
exist a decomposition D in the middle of this spectrum, so to speak, such that
Gτ,D is cyclic, but Gτ,D′ for any D wc D′ is acyclic. In the following we will
formally argue why such a decomposition D is at the centre of identification of
serializability repairs.

A cycle in a graph is simple if only one vertex is repeated more than once.

Definition 6 (Critical Segment Sets). Let D be a decomposition such that
the interval graph Gτ,D is cyclic and α = i0 . . . in−1i0 be a simple cycle. Define

edges(α) = tre(i0, i1)× tre(i1, i2)× · · · × tre(in−1, i0)

segs(~e) = {[e�k , e
⊗
k ] | 0 ≤ k ≤ n− 1 ∧ (e�k , e

⊗
(k+1) mod n) = ~e.k}

critSegs(~e) = {[e�k , e
⊗
k ] ∈ segs(~e) | (e�k , e

⊗
k ) ∈ poτ}

CritSegs(α) = {s | ∃~e ∈ edges(α) : s = critSegs(~e)}

where the set CritSegs(α) is the set of all critical segments sets of cycle α.



12 B. Çirisci et al.

Note that each cycle may induce several different segment sets, determined
by |edges(α)|. More importantly, each segment set includes at least one critical
segment.

Lemma 1. For any ~e ∈ edges(α), we have critSegs(~e) 6= ∅.

Example 1. In Figure 3, α1 = i1, i2, i3, i1 is a simple cycle. Included in edges(α)
are the following three cycles and their corresponding segments:

α1
1 = 〈(e1, e6), (e6, e7)(e8, e3)〉 segs(α1

1) = {[e1, e3], [e6, e6], [e8, e7]}
α2
1 = 〈(e1, e6), (e6, e7), (e8, e4)〉 segs(α2

1) = {[e1, e4], [e6, e6], [e8, e7]}
α3
1 = 〈(e1, e6), (e5, e8), (e8, e3)〉 segs(α3

1) = {[e1, e3], [e5, e6], [e8, e8].}

The critical segments for these are critSegs(α1
1) = {[e1, e3]}, critSegs(α2

1) =
{[e1, e4]} and critSegs(α3

1 ) = {[e1, e3], [e5, e6]}.

There is a direct connection between the notion of critical segment sets and
conflict serializability repairs that the following lemma captures. A segment is
called uninterrupted in a trace τ when all its events occur continuously one after
another in τ without an interruption from events of another interval.

Lemma 2. Let α be a cycle in some interval graph Gτ,D of trace τ which is
not conflict serializable wrt to the decomposition D and critSegα ∈ CritSegs(α).
There does not exist trace τ ′ which is equivalent to τ in which all segments from
critSegα are uninterrupted in τ ′.

The immediate corollary of Lemma 2 is that if one ensures the atomicity of
the segments of events in CritSegs(α) by adding atomic blocks at the code level,
then τ can no longer be an execution of the library. In other words, a set of such
atomic code blocks is precisely a trace eliminator (Definition 3) for τ .

5.2 A Simple Algorithm

Lemma 2 and its corollary suggest a simple enumerative algorithm to discover
the set of all trace eliminators for a buggy trace τ .

– Let D be the set of all decompositions of τ and R = ∅.
– For each D ∈ D:
• Let C be the set of all simple cycles in Gτ,D.
• For each α ∈ C:
∗ Let S = CritSegs(α).
∗ R = R ∪ S

– For each R ∈ R:
• If ∃R′ ∈ R : R wc R′ then R = R− {R}.

Theorem 3. The above algorithm produces the optimal set of trace eliminators
for a buggy trace τ .
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This theorem is non-trivial, because the set of cycles considered are limited to
simple cycles and an argument is required for why no optimal solution is missed
as the result of this limitation. An important point is that any optimal trace
eliminator R defines a decomposition D where the non-singleton intervals are
precisely those defined by R such that Gτ,D contains a simple cycle α and the
set of code blocks in R is a member of CritSegs(α). Note that the algorithm may
end up producing non-ideal solutions in the first loop, and the proof of Theorem
3 relies on the argument that all such solutions will be filtered out by a proper
solution that guarantees to exist and subsume them.

Example 2. The first loop of the above algorithm includes in R the trace elimi-
nators induced by the critical segments mentioned in Example 1. After the last
loop, however, only critSegs(α1

1) = {[e1, e3]} will remain in R since the other two
are subsumed by it.

The algorithm is obviously very inefficient. There are two levels of enumeration:
all decompositions and all cycles of each decomposition. Assuming that there are
O(|poτ |) events in an operation, then there are O(2|poτ |) different decompositions
for it. Assuming that there are O(|T|) operations, we conclude that |D| =
O(2|poτ ||T|). There could be O(2|Eτ |) possible cycles for each decomposition where
Eτ = poτ ∪ cfτ . Therefore, the first loop may generate O(22|Eτ ||T|) many repairs.
The last loop iterates over R and each repair takes O(R) time. The algorithm
operates in time O(24|Eτ ||T|). It is exponential both in the size of threads set and
the graph. There are many redundancies in the output of the first loop, however.
These are exploited to propose an optimized version of this algorithm.

5.3 A Sound Optimization

Consider an arbitrary cycle α in the interval graph Gτ,D. If we want to trace the
cycle α over the trace graph Gτ , we would potentially need additional edges that
would let us go against the program order inside some intervals that appear on
α. Let us call the graph extended with such edges GDτ . Formally, GDτ includes
all the nodes and edges from a trace graph and incorporates additional edges
between the events of each interval of D to turn it into a clique9 which is by
definition a strongly connected and therefore accommodates the connectivity of
any event of an interval to another event in it.

The converse also holds, that is, every simple cycle with at least one conflict
edge in the GDτ with the aforementioned additional edges corresponds to a cycle
in the interval graph Gτ,D. Note that the inclusion of at least one conflict edge
is essential, since every interval graph cycle always includes one such edge by
default; since the program order relation is acyclic. Formally:

Lemma 3. For each simple cycle α of Gτ,D, there exists a simple cycle α′ of
GDτ that contains at most two events from each interval in α.

9 A clique is a complete subgraph of a given graph.
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The above lemma can immediately be generalized. Consider the graph GMτ
where M indicates the decomposition whose intervals coinciding with the library
method boundaries. Since for any arbitrary decomposition D, we have M wc D,
we can conclude that GMτ includes all possible additional edges that one may want
to consider as part of a cycle in an arbitrary GDτ for an arbitrary decomposition
D. Hence, the set of edges of GMτ is a superset of the set of edges of all graphs GDτ
for all D. This immediately implies that the set of cycles of GMτ is the superset
of the set of cycles of all such graphs. This fact, combined with Lemma 3 leads
us to the new simplified algorithm below in place of the one in Section 5.2:
– Let R = ∅.
– Let C′ be the set of all simple cycles in GMτ .
– For each α ∈ C:
• Let S = critSegs(α).
• R = R ∪ S

– For each R ∈ R:
• If ∃R′ ∈ R : R wc R′ then R = R− {R}.

Note that we are slightly bending the definition of critSegs in the above
algorithm, compared to the one given in Definition 6 since the input cycle there
is formally a tuple, and here itis simply a list. The function is semantically the
same, however and therefore we do not redefine it.

Observe that ever cycle of GMτ corresponds to a cycle in some graph GDτ for
some decomposition D. This observation together with Lemma 3 and Theorem
3 implies the correctness of the above algorithm. Every cycle of every GDτ is
covered by the algorithm, and conversely every cycle considered is valid.

We can simplify the above algorithm one step further by further limiting the
set of cycles C′ that need to be enumerated. In graph theory, a chord of a simple
cycle is an edge connecting two vertices in the cycle which is not part the cycle.

Theorem 4. The above algorithm produces the set of optimal trace eliminators
for τ if C′ is limited to the set of simple chordless cycles of GMτ .

Theorem 4 makes a non-trivial and algorithmically subtle observation. Enu-
merating the set of all simple chordless cycles of GDτ is a much simpler algorithmic
problem to solve compared to the initial one from Section 5.2. Lemma 3 supports
part of this argument since it ensures that all repairs explored in the algorithm
from Section 5.2 are also explored by the above algorithm. For Theorem 4 to
hold, one needs to additionally argue that the cycles of GMτ do not produce any
junk, that is, each cycle’s critical segments correspond to a valid trace eliminator
for τ . Also, as for simple cycles, CritSegs(α) for a cycle α subsumes CritSegs(α′)
for any chordless cycle α′ included in α. In Section 6.1, we present an algorithm
that solves the problem of enumerating all cycles in C′ effectively.

6 Repair List Generation

In this section, we first start by giving a detailed algorithm that produces the
set of all optimal trace eliminators. These repairs suggest incomparable optimal
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ways of removing an erroneous trace from the library. We then present a novel
heuristic that orders this set into a list such that the the ones ranked higher in
the list are more likely to correspond to something that a human programmer
would identify (amongst the entire set) as the ideal repair.

6.1 Optimal Repairs Enumeration Algorithm

In this section, we present an algorithm for enumerating all simple chordless
cycles in GMτ with at least one cfτ edge, prove its correctness, and formally
analyze its time complexity. The algorithm is the following:

– Let C = ∅.
– For each sequence α = c1, c2, . . . , cn where ci ∈ cfτ and 0 < n ≤ |T|:
• Let ci = (e⊗i , e

�
i ) for all i ∈ [1, n].

• If (e�i , e
⊗
(i mod n)+1) ∈ E

M
τ \cfτ and e�i 6= e�j s.t. i, j ∈ [1, n] s.t. i 6= j:

∗ C = C ∪ {α}
It enumerates all non-empty cfτ sequences of length less than or equal to |T|.

If the sequence forms a valid simple cycle and visits each thread at most once
(i.e. there are no two distinct conflict edges such that its end points are on the
same thread), then it is added to the result set C. Correctness of the algorithm
relies on the following observation:

Lemma 4. α is a chordless cycle of GDτ with at least one cfτ edge if and only
if α visits each thread at most once and it visits at least two threads.

k

k

�1 �2 �3 ��
��−1

k

k

Fig. 4: GMτ with |cfτ ||T| chordless cycles.

As a corollary of Lemma 4, we
know that a chordless cycle could
have at most |T| conflict edges. Oth-
erwise, by the pigeon hole principle,
at least two conflict edges end up in
the same thread. Therefore, the al-
gorithm can soundly enumerate only
sequences of cfτ edges of length less
than or equal to |T|. Moreover, the
choice of cfτ determines the rest of the
edges in the cycle. Therefore, there
are at most O(|cfτ ||T|) chordless cy-
cles with at least one cfτ edge of a
graph GDτ .

Note that, in general, the number
of simple cycles can be exponential in
the number of edges. This means that
enumerating only chordless cycles re-
duces the size asymptotically. In other words, our proposed sound optimization
of Section 5.3 is at the roof of the polynomial complexity results presented here.

Interestingly, this upper bound is not loose. There is a class of traces
parametrized by |T| such that the number of chordless cycles with at least
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one cfτ edge is |cfτ ||T|. Let T = {t1, . . . , tn} be the set of threads and GMτ has
k parallel conflict edges between ti and t(i mod n)+1 for all i ∈ [1, n]. Moreover,
conflict edges that start from ti is above the conflict edges that end at ti in terms
of program order. This graph is depicted in Figure 4. To form a cycle, one needs
to pick one of k edges between ti and t(i mod n)+1 for all i ∈ [1, n]. So, there are

kn cycles. Since k = |cfτ |
|T| , there are

(
|cfτ |
|T|

)|T|
chordless cycles with a conflict

edge. If we consider |T| as a constant, there are Ω(|cfτ ||T|) chordless cycles with
at least one cfτ edge. We are finally ready to state the main complexity result:

Theorem 5. Above enumeration algorithm generates all chordless cycles with
at least one cfτ edge of GDτ in O((|poτ |+ |cfτ |)|cfτ ||T|) time.

Proof. The loop enumerates all the cfτ sequences of length at most |T| in
O(|cfτ ||T|) time. For each such sequence, it takes O(|poτ |+ |cfτ |) time to check
whether this sequence forms a cycle (if each consecutive conflict edges are con-
nected through a EMτ \cfτ edge) and whether it visits a thread more than once.
As a consequence, the above bound holds.

Lastly, there may be as many optimal repairs as there are chordless cycles
in GMτ . Consider the class of traces depicted in Figure 4. Each chordless cycle
with at least one cfτ edge has exactly n critical segments (illustrated in red).
Consider two distinct chordless cycles α1 and α2. There exists a thread ti such
that there is a different edge between ti and t(i mod n)+1 in α1 compared to α2.
Without loss of generality, assume that the corresponding edge of α1 has source
and destination events that appear before the source and destination events of
the corresponding edge of α2 in program order (poτ ). Then, α1 has a larger
critical segment on ti and smaller critical segment in t(i mod n)+1 compared to
α2. Therefore, the neither critical segment subsumes the other. Therefore, each
chordless cycle with at least one cfτ edge produces an optimal repair.

This implies that the bound presented in Theorem 5, namely O((|poτ | +
|cfτ |)|cfτ ||T|), applies any other algorithm that outputs all optimal repairs.

6.2 Ranking Optimal Repairs

We argued through the example in Section 2 and a formal statement in Section
4.1 that not every eliminator of a buggy trace τ is an optimal root cause for
non-linearizability. All that we know is that they are all optimal trace eliminators.
As a heuristic to identify optimal linearizability repairs out of a set of trace
eliminators, we rely on another input in the form of a set Γ of linearizable
executions, and rank trace eliminators depending on how many linearizable traces
from Γ they disable, giving preference to trace eliminators that disable fewer
ones. This heuristic relies on an experimental hypothesis that there are harmless
cyclic dependencies that occur in linearizable executions.

Given a buggy trace τ , and a set Γ of linearizable traces, we use the following
algorithm to rank trace eliminators for τ :

– Let R be the set of optimal trace eliminators for τ
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– For each R ∈ R:
• Let f(R) = |{τ ′ ∈ Γ : R is a trace eliminator for τ ′}|

– Sort R in ascending order depending on f(R) with R ∈ R.

Since the above algorithm is heuristic in nature, there are no theoretical
guarantees for the optimality of its results. For instance, its effectiveness depends
on the set of linearizable traces Γ given as input. We discuss the empirical aspects
of the underlying hypothesis in more detail in Section 7.

7 Experimental Evaluation

We demonstrate the efficacy of our approach for computing linearizability root-
causes on several variations of lock-based concurrent sets/maps from the Syn-
chrobench repository [21]. We consider three libraries from this repository: two
linked-list set implementations, with coarse-grain and fine-grain locking, respec-
tively, and a map implementation based on an AVL tree overlapping with two
singly-linked lists, and fine-grain locking. We define three non-linearizable varia-
tions for each library by shrinking one atomic section only in the add method,
only in the remove method, or an atomic section in each of these two methods.
For each non-linearizable variation, we use Violat [14] to randomly sample three
library clients that admit non-linearizable traces10. We use Java Pathfinder [44] to
extract all traces of each client, up to partial-order reduction, partitioning them
into linearizable and non-linearizable traces. Traces are extracted as sequences of
call/return events and read/write accesses to explicit memory addresses, associ-
ated to line numbers in the source code of each of the API methods. The latter
is important for being able to map critical segments (which refer to events in a
trace) to atomic code blocks in the source code.

In Table 1, we list some quantitative data about our benchmarks, the clients,
and the non-linearizable variations identified by the line numbers of the mod-
ified atomic sections (the original libraries can be found in the Synchrobench
repository). For instance, the first variation of RWLockCoarseGrainedListIntSet
is obtained by shrinking the atomic section in the add method between lines
[26, 32/35] to [32, 32/35] (there are two line numbers for the end of the atomic
section because it ends with an if conditional).

For each non-linearizable trace τ of a client C, we compute the set of optimal
trace eliminators for τ using the algorithm in Section 5.3 with the cycle enu-
meration described in Section 6.1. We then compute the ranking of these trace
eliminators using as input the set of linearizable traces of C (the restriction to
linearizable traces of the same client is only for convenience). Note that multiple
trace eliminators can be ranked first since they disable exactly the same number
of linearizable traces. Also, note that an optimal root-cause can disable a number
of linearizable traces. This is true even for the ground truth repair (i.e. a repair
that a human would identify trough manual inspection).
10 These linearizability violations are quite rare. The frequencies reported by Violat in

the context of a fixed client (when using standard testing) are in the order of 1/1000.
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Table 1: Benchmark data. Column Lib. shows the transformation on the atomic
section(s) of the original library (we write atomic sections as pairs of line numbers in
square brackets), Client shows the clients (we abbreviate the names of add, remove, and
contains to a, r, and c, resp.), Non-lin. Out. shows an outcome (set of return values)
witnessing for non-linearizability (true, false, and null are abbreviated to T, F, and N,
resp.), # bugs and #valid give the number of non-linearizable and linearizable traces
extracted using Java Pathfinder, respectively, # ev. and # conf. give the average
number of events and conflict edges in these traces, Total(s) and Tr. Elim(s) give
the clock time in seconds for applying our approach, the latter excluding the Java
Pathfinder time for extracting traces.

RWLockCoarseGrainedListIntSet (119 LOC)
Id Lib. Client Non-Lin Out. # bugs # valid # ev. # conf. Total(s) Tr. Elim.(s)
1 a: [26, 32/35]

→[32, 32/35]

{c(1); r(1); a(1)} || {a(1)} F, F, T, T 9 36 48 5 13 5
2 {a(0); a(1)} || {a(0)} T, T, T 18 18 45 6 11 4
3 {a(0); a(0)} || {a(1)} T, T, T 9 27 43 8 11 4
4 r: [47, 54/56]

→[53, 54/56]

{a(0); a(0); r(0)} || {r(0)} T, F, T, T 9 27 48 10 12 4
5 {a(0); a(0)} || {a(1); r(1)} T, T, T, T 9 18 54 14 12 3
6 {r(0)} || {a(0); r(0)} T, T, T 9 18 39 9 11 3

7 a: [26, 32/35]
→[32, 32/35]
r: [47, 54/56]
→[53, 54/56]

{a(0); r(0)} || {r(0); a(1)} T, T, T, T 27 27 51 12 23 8T, F, F, T
8 {a(1); r(1)} || {a(0)} T, F, T 9 27 41 6 11 4
9 {c(0); a(1); r(1); c(0)} || {r(1)} F, T, T, F, T 9 18 57 11 12 3

OptimisticListSortedSetWaitFreeContains (193 LOC)
Id Lib. Client Non-lin. Out. # bugs # valid # ev. # conf. Total(s) Tr. Elim.(s)
1 a: [51, 52/56]

→[52, 52/56]

{a(0); a(0)} || {a(1)} T, T, T 6 39 64 16 23 31
2 {a(0); a(1)} || {a(0)} T, T, T 18 27 70 13 17 8
3 {a(0)} || {c(1); a(0)} T, F, T 6 18 46 6 7 3
4 r: [78, 80/82]

→[79, 80/82]

{c(0); a(1); r(1); c(0)} || {r(1)} F, T, T, F, T 6 18 64 17 10 3
5 {a(0); r(0)} || {r(0); a(1)} T, T, T, T 12 30 70 25 22 5
6 {a(0); a(0)} || {a(1); r(1)} T, T, T, T 6 42 83 28 38 16
7 a: [51, 52/56]

→[52, 52/56]
r: [78, 80/82]
→[79, 80/82]

{a(0); a(0); r(0)} || {r(0)} T, F, T, T 6 27 65 17 18 6
8 {a(0)} || {a(0); r(1)} T, T, F 9 18 58 9 12 5

9 {c(1); r(1); a(1)} || {a(1)} F, F, T, T 6 36 59 8 11 5

LogicalOrderingAVL (1092 LOC)
Id Lib. Client Non-lin. Out. # bugs # valids # ev. # conf. Total(s) Tr. Elim(s)
1 a: [267, 293]

→[268, 269][271, 293]

{a(1,0)} || {a(1,1); r(1,1)} 1, N, T 6 51 99 11 131 24
2 {r(1,1); r(0,1)} || {a(1,1); a(1,0)} T, F, N, 1 6 30 126 42 115 24
3 {r(0,0); r(1,0)} || {a(0,0); a(0,1)} T, F, N, 0 6 30 126 42 100 22
4 r: [432, 454]

→[433, 434][436, 445]

{a(1,0); a(0,0); r(0,0)} || {r(1,0)} N, N, F, T 9 75 152 40 593 37
5 {a(1,0); r(1,0)} || {r(1,0)} N, T, T 9 36 122 31 77 8
6 {a(0,1); r(0,1); r(0,0)} || {r(0,1)} N, T, F, T 9 36 138 33 92 10
7 a: [267, 293]

→[268, 269][271, 293]
r: [432, 454]
→[433, 434][436, 445]

{a(0,1); r(0,1)} || {a(0,0)} N, T, 1 6 51 102 11 119 16
8 {r(1,0)} || {a(1,0); a(1,1); a(1,0)} T, N, 0, N 9 39 137 41 53 19

9 {r(1,0); a(0,1)} || {a(0,0); r(0,0)} F, 0, N, T 6 51 117 17 171 26

The results are presented in Table 2 and are self-explanatory. In the majority
of cases, the first elements in this ranking are atomic sections which are precisely
or very close to the expected results, i.e., atomic sections that belong to the
original (error-free) version of the corresponding library. In some cases, the output
of our approach is close, but not precisely the expected one. This is only due to
the particular choice of the client used to generate the traces. In general, the
quality of the produced repairs (compared to the ground truth) depends the
types of behaviours of the library that the client exercises. However, if our tool
ranks repair R first, in the context of a client C, then after repairing the library
according to R the client C produces no linearizability violations.

The methods in the libraries OptimisticListSortedSetWaitFreeContains and
LogicalOrderingAVL use optimistic concurrency, i.e., unbounded loops that restart
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Table 2: Experimental data. Column #res gives the number of different results (se-
quences of trace eliminators) returned by our algorithm when applied on each of the
non-linearizable traces of a client, and Tr. Elim. gives the first or the first two trace
eliminators in the ranking obtained with our approach. For each trace eliminator we
give the number of linearizable traces it disables (after →).

RWLockCoarseGrainedListIntSet
Id Lib. # res. Tr. Elim.
1 a: [26, 32/35]

→[32, 32/35]

1 [ [27, 35] ] → 0
2 1 [ [27, 35] ] → 0
3 1 [ [27, 35] ] → 18
4 r: [47, 54/56]

→[53, 54/56]

1 [ [48, 54] ] → 0
5 1 [ [48, 54] ] → 9
6 1 [ [48, 54] ] → 9

7 a: [26, 32/35]
→[32, 32/35]
r: [47, 54/56]
→[53, 54/56]

2 [ [48, 54] ] → 0
[ [27, 35] ] → 0

8 1 [ [27, 35] ] → 9
9 1 [ [48, 54] ] → 0

OptimisticListSortedSetWaitFreeContains
Id Lib. # res. Tr. Elim.

1
a: [51, 52/56]
→[52, 52/56]

2
[ [55, 56] ] → 0
[ [43, 44], [55, 56] ] → 0
[ [43, 51] ] → 0

2 2 [ [51, 56] ] → 15
[ [55, 56] ] → 0

3 1 [ [51, 56] ] → 12
4

r: [78, 80/82]
→[79, 80/82]

1 [ [78, 80] ] → 0
5 1 [ [78, 80] ] → 0

6 2 [ [78, 80] ] → 6
[ [43, 44], [55, 56] ] → 0
[ [78, 80] ] → 6

7 a: [51, 52/56]
→[52, 52/56]
r: [78, 80/82]
→[79, 80/82]

1 [ [78, 80] ] → 0

8 2 [ [51, 56] ] → 12
[ [55, 56] ] → 0

9 1 [ [51, 56] ] → 27

LogicalOrderingAVL
Id Lib. #res Tr. Elim.

1 a: [267, 293]
→[268, 269][271, 293]

1 [ [271, 279], [448, 451] ] → 0
[ [265, 271] ] → 27

2 2

[ [271, 279], [448, 451 ] ] → 0
[ [430, 436 ] ] → 9
[ [289, 290] ] → 0
[ [290, 293], [423, 430 ] ] → 0

3 2

[ [271, 279], [448, 451 ] ] → 0
[ [430, 436 ] ] → 9
[ [289, 290] ] → 0
[ [290, 293], [423, 430 ] ] → 0

4

r: [432, 454]
→[433, 434][436, 445]

1 [ [436, 445] ] → 6
[ [451, 454], [423 ,436] ] → 15

5 1 [ [436, 451] ] → 0

6 2
[ [436, 450] ] → 0
[ [436, 450] ] → 0
[ [430, 436] ] → 0

7 a: [267, 293]
→[268, 269][271, 293]
r: [432, 454]
→[433, 434][436, 445]

1 [ [271, 279], [448, 451] ] → 0

8 1 [ [271, 279], [448, 451] ] → 0
[ [430, 436] ] → 30

9 1 [ [271, 279], [448, 451] ] → 0
[ [265, 271] ] → 27

when certain interferences are detected. This could potentially guide our heuristic
in the wrong direction of giving the ground truth a lower rank. Indeed, a ground
truth that concerns statements in the loop body could disable a large number of
executions which only differ in the number of loop iterations. This, however, does
not happen for small-size clients (like the ones used in our evaluation) since the
number of invocations are bounded, which bounds the number of interferences
and therefore the number of restarts.

Optimistic concurrency has the potential to mess with the heuristic, but this
does not happen in small bounded clients as witnessed by our blah benchmark
that does just fine

To conclude, our empirical study demonstrates that given a good client (one
that exercises the problems in the library properly), our approach is very effective
in identifying the method at fault and the part of its code that is the root cause
of the linearizability violation.

8 Related Work

Linearizability Violations. There is a large body of work on automatic detec-
tion of specific bugs such as data races, atomicity violations, e.g. [18, 40, 41, 45].
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The focus of this paper is on linearizability errors. Wing and Gong [47] pro-
posed an exponential-time monitoring algorithm for linearizability, which was
later optimized by Lowe [33] and by Horn and Kroening [25]; neither avoided
exponential-time asymptotic complexity. Burckhardt et al. [4] and Burnim et
al. [5] implement exponential-time monitoring algorithms in their tools for testing
of concurrent objects in .net and Java. Emmi and Enea [15, 14] introduce the
tool Violat (used in our experiments) for checking linearizability of Java objects.
Concurrency Errors. There have been various techniques for fault localiza-
tion, error explanation, counterexample minimization and bug summarization
for sequential programs. We restrict our attention to relevant works for concur-
rent programs. More relevant to our work are those that try to extract simple
explanations (i.e. root causes) from concurrent error traces. In [30], the authors
focus on shortening counterexamples in message-passing programs to a set of
“crucial events” that are both necessary and sufficient to reach the bug. In [27],
the authors introduce a heuristic to simplify concurrent error traces by reducing
the number of context-switches. Tools that attempt to minimize the number of
context switches, such as SimTrace [26] and Tinertia [27], are orthogonal to the
approach presented in this paper. To gain efficiency and robustness, some works
rely on simple patterns of bugs for detection and a simple family of matching
fixes to remove them, e.g., [29, 10, 28, 38]. Our work is set apart from these
works by addressing linearizability (in contrast to simple atomicity violation
patterns) as the correctness property of choice, and by being more systematic
in the sense that it enumerates all trace eliminators for a given linearizability
violation. We also present crisp results for the theoretical guarantees behind our
approach and an analysis of the time complexity. Weeratunge et al. [46] use a set
of good executions to derive an atomicity “specification”, i.e., pairs of accesses
that are atomic, and then enforce it using locks.

There is large body of work on synchronization synthesis [7, 8, 11, 34, 43, 42,
2, 6, 22]. The approaches in [11, 42] are based on inferring synchronization by
constructing and exploring the entire product graph or tableaux corresponding
to a concurrent program. A different group of approaches infer synchronization
incrementally from traces [43] or generalizations of bad traces [7, 8]. These tech-
niques [7, 8, 43] also infer atomic sections but they do not focus on linearizability
as the underlying correctness property but rather on assertion local violations.
Several works investigate the problem of deriving an optimal lock placement given
as input a program annotated with atomic sections, e.g., [9, 17, 48]. Afix [28]
and ConcurrencySwapper [7] automatically fix concurrency-related errors. The
latter uses error invariants to generalize a linear error trace to a partially ordered
trace, which is then used to synthesize a fix.
Linearizability Repairs. Flint [32] is the only approach we know of that
focuses on repairing non-linearizable libraries, but it has a very specific focus,
namely fixing linearizability of composed map operations. It uses a different
approach based on enumeration-based synthesis and it does not rely on concrete
linearizability bugs.
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